

Bearings, Ball Screws and NSK Linear Guides, for Special Environments

Applications of

Specification Inquiry-------C11

Table of Contents	
SPACEA™ SeriesP	2–7
Global NetworkP	4–5
Research and Development·····P	6–7
SPACEA™ Bearings ······························· A1–/	466
Table of Contents of SPACEA™ Bearings······ A1-	-A2
Inventory A3-	-A4
Selection GuideA5-	-A8
Dimensions, Accuracy, and Availability A9-A	\28
Product Information	460
Applications of SPACEA™ Series Bearings ······ A61-A	466
SPACEA™ Series Ball Screws and NSK Linear Guides·····B1–E	334
Table of Contents of SPACEA™ Series Ball Screws and NSK Linear Guides ····································	-B2
InventoryB3-	-B4
Selection GuideB5-	-B6
Types and SpecificationsB7-	-B8

Product Information ······B13-B32 Transporters in clean rooms

 Production machinery for SPACEA™ Series Ball Screws and NSK Linear Guides ······ B33-B34 semiconductors and FPDs panels, and conveyors in

machinery

Corrosive

Cleanroom

Hard disk production

High-temperature

Solar cell product

High-temperature

conveyors

Kiln cars

Semiconductor

production machinery

Cleaning equipment for

and hard disks

Conveyors Chemical plants Plating facilities Etching equipment

Application

Application

semiconductors, FPDs, PDPs

Food processing machinery

Application

stands up to tough operation requirements in vacuum, corrosive, cleanroom, high-temperature, non-The SPACEA Series is optimized for a variety of advanced applications, including semiconductor, flat panel display, and hard disk production; food processing machinery; pharmaceutical/cosmetics production; and ceramics,

chemistry, and optics equipment.

Sanitary Application

special environments

magnetic, and contaminated environments.

Food processing machinery

The SPACEA™ Series—responding to extreme,

NSK's SPACEA™ Series adapts the vacuum lubrication, material, and thin-film technologies for advanced applications. Our wide array of bearings, ball screws, and NSK Linear Guide™ products offer high functionality and unmatched quality in special environments. As such, the SPACEA Series

Medical instruments

Contaminated Application

- Food processing machinery
- Woodworking machinery
- Tire buffs
- Welding lines
- Graphite processing machinery
- Laser machinery

Non-magnetic

Application

- Electron beam rendering devices
- Electron beam aligners
- Inspection equipment

Application Vacuum

SPACEA™ Series

- FPDs, and hard disks
- Vacuum robots

Vacuum evaporation devices

 Space exploration equipment Solutions that excel in diverse operating conditions and a broad range of applications.

NSK Global Network

NSK's global network is key to our ability to develop innovative products that incorporate the latest technologies.

Our network connects each sales branch, distribution center, production facility, and technology center and enables us to gather the latest information from each location.

Data is instantly accessible to every part of the network, resulting in products of the highest quality.

Our global system also receives and processes orders, ships products, and provides technical support.

By leveraging our resources, NSK quickly responds to diverse challenges, no matter how complex.

Headquarters.....6 Plants....66 Sales offices.....106 ☐ Technical offices.....22

EUROPE/AFRICA					ASIA/OCEANIA			
U.K.	1	4	2	1	Singapore	1		
Germany		2	4	2	Indonesia		3	2
Denmark				1	Thailand		2	Ę
France			1		Malaysia		2	3
Italy			1		Philippines			•
Holland			1		Vietnam			2
Spain			1		India	1	5	7
Poland		4	3	1	Australia			
Turkey			1		New Zealand			1
U.A.E.			1		Japan	1	20	3
South Africa			1		China	1	11	1

THE AMERICAS				
U.S.A.	1	7	7	
Canada			2	
Mexico		2	1	
Brazil		1	1	
Peru			1	
Argentina			1	

March 2022

NSK's global network means excellent products and superior customer service.

NSK's communication system links the major markets of the world in Europe, Asia, Japan, and the Americas. We use this highly developed system to share information on changes and trends in each market in real time. As a result, we can react quickly to meet changing customer needs, supplying optimized, high-quality products. Our global network makes NSK a truly global company. We are able to transcend borders and other restrictions to meet the needs of our customers around the globe.

4 NSK

NSK Research and Development

Extensive commitment to research and development through a network of four bases in the United States, Europe, and Asia, with Japan as the core.

Bearings for corrosive environments

SPACEA Series Bearings: Functionality and Quality Tailored for Special Environments

Through a diverse lineup committed to functionality and quality, SPACEA Series bearings suit a wide range of conditions, requirements, and environments.

Please see Pages A5–A8 for recommended bearings for specific applications.

SPACEA™ Bearings

A Inventory

A	Inventory ·····	A3–A4
B	Selection Guide	A5–A8
C	Dimensions, Accuracy, and Availability	A9–A28
D	Specifications, Operating Instructions, and Technical Data	
	1. Stainless Steel Bearings	A29–A30
	2. Stainless Steel Angular Contact Ball Bearings	A31
	3. Stainless Steel Self-Aligning Ball Bearings	A32
	4. Molded-Oil™ Bearings (For corrosive environments, For sanitary environments) ·······	A33–A34
	5. Hybrid Bearings ····	A35–A36
	6. Corrosion-Resistant Coated Bearings	A37–A38
	7. ESZ Bearings ·····	A39–A40
	8. All-Ceramic Bearings ·····	A41–A42
	9. Aqua-Bearing™ ····	A43–A44
	10. LG2/LGU Grease-Packed Bearings ·····	A45–A46
	11. FG9 Fluorine Grease-Packed Bearings ·····	A47–A48
	12. E-DFO Bearings, V-DFO Bearings.	A49–A50
	13. KPM Grease-Packed Bearings	A51–A52
	14. YS Bearings with Spacer Joints ·····	A53–A54
	15. SJ Bearings	A55–A56
	16. Food Grade Grease-Packed Bearings ·····	A57–A58
	17. Molded-Oil™ Bearings (For Contaminated Environments) ·····	A59–A60
E	Applications for SPACEA™ Series Bearings ······	A61–A66

Vacuum environments

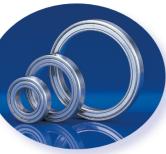
· FG9 fluorine grease-packed bearings

· YS bearings with spacer joints

Lineup

NSK's SPACEA™ Series bearings for special environments are optimized for operating environments that are too severe for ordinary bearings, such as production machinery for semiconductors, flat panel displays (FPDs), hard disks; food processing machinery; and equipment for pharmaceutical, cosmetics, ceramics, chemistry, and optics.

Sanitary environments


- For food processing machinery
- · Food grade grease-packed bearings
- Molded-Oil[™] bearings with food grade lubricant

Food grade grease-packed bearings

Cleanroom environments

- At atmospheric pressure, room temperature
- · LG2 grease-packed bearings
- · LGU grease-packed bearings
- At atmospheric pressure, vacuum
- · FG9 fluorine grease-packed bearings
- · DFO bearings

Clean grease-packed bearings

SJ bearings

High-temperature environments

- KPM grease-packed bearings
- Vacuum, high-temperature
- · YS bearings with spacer joints
- SJ bearings

YS bearings with spacer joints

DFO bearings

Corrosive environments

- Wet environments
- · Stainless steel bearings

Cleanroom

· DFO bearings

· SJ bearings

High-temperature

- Molded-Oil[™] bearings
- Hybrid bearings
- · Corrosion-resistant coated bearings
- Alkali and weak acid environments
- · ESZ bearings

Stainless steel bearings

- Strong acid and reactive gas environments
- Aqua-Bearing™
- · All-ceramic bearings

Aqua-Bearing™

SPACEA™ Series Bearings

All-ceramic bearings

Molded-Oil™ bearings

Contaminated environments

Non-magnetic requirements

· All-ceramic bearings

- At atmospheric pressure, dust-contaminated
- · Molded-Oil™ bearings

A3 **NSK**

B SPACEA™ Bearing Selection Guide-I

1. Select the most appropriate bearing with the following selection flow chart.

Select the group of bearings appropriate for your operating environment and application.	② Find the bearings that suit your operating conditions.	Select the bearing most appropriate in terms of availability and price.	Check the operating instructions and notes.
--	--	---	---

										2 Opera	ting cond	tions							
	0	① perating environment	Product	Degree of va	cuum	Ope	erating te	emperati	ure	Cleanlines (ISO/US Fed. St		Limiting rotationa d _m n ⁽²⁾	al speed		niting loa P/C _H (3)		3 Price	3 Availability	·Specifications ·Operating instructions
	J	poracing crivilorimone		Atmospheric pressure ≥10 ⁻⁴	≥10-8	≤100	≤100 ≤200 ≤300 ≤400		Classes 5-6 (100–1 000) Class 5 (100)	Class 4 (10)	≤20 000 ≤50 000 ≤150 000		≤1%	≤2%	≤5%	comparison		·Technical data	
	Ē	Classification of air cleanliness ⁽¹⁾ : Classes 5-6 (100–1 000)	FG9 fluorine grease-packed bearings	10 ⁻ 4Pa		20	00 °C	For details	s, please age A47.	•		50 000				5%	Low	Page A21-A22	Page A47-A48
_	eanroo	Classification of air cleanliness ⁽¹⁾ : Classes	V-DFO bearings	10-7	² Da	20	00 °C	For details	s, please	Close 4 (10)	20 000			2%			Daga 402	Dama A40, A50
Vacing	ō	4-5 (10–100)	E-DFO bearings	10-7	Pa	150 °C		refer to Pa	age A50.	Class 4 (20 000				5%	High	Page A23	Page A49-A50
>	High- temperature	Up to 400 °C	SJ bearings	1	I0-®Pa			4	100 °C			20 000		For details Page A55.	, please re	efer to	Low	Page A26	Page A55-A56
	Hig	Up to 350 °C	YS bearings with spacer joints	1	I0-®Pa			350°C				20 000		For details Page A53.		efer to	High	Page A25	Page A53-A54
		High-humidity	Stainless steel bearings			80 °C						1	50 000			5%	Low	Page A11-A14	Page A29-A30
o t c	ter	Materiania	Molded-Oil™ bearings			60 °C						For details, please Page A33.	refer to		1 t	to 5%		Page A16	Page A33-A34
environmente	Wate	Water spray, immersed	Hybrid bearings			450 00						20 000			00/			Dago A17	Page A35-A36
ziv.ce		Water, sterilization liquid	Corrosion-resistant coated bearings			150 °C						20 000			2%			Page A17	Page A37-A38
, io Crio		Weak acid and alkali	ESZ bearings	•		150 °C						20 000			2%		High	Page A18	Page A39-A40
Č		war a sid and washing sta	Aqua-Bearing™			100 °C						00,000		1%			Low	Page A20	Page A43-A44
	St	rong acid and reactive gas	All-ceramic bearings			150 °C						20 000				5%	High	Page A19	Page A41-A42

- (1) Cleanliness is indicated per ISO 14644-1 (values in parentheses refer to former US FED-STD-209E Classes). Cleanliness may vary depending on operating conditions, surrounding structures, and other factors.
- $(2)d_{m}n =$ (bearing bore diameter + bearing outer diameter (mm)) ÷ 2 × rotational speed (min)-1
- (3) The limiting load is estimated based on endurance (total rotational frequency) corresponding to 10⁷ as a
- P: equivalent load (N), C_H: load rating (N) of stainless steel
- (Durability varies by operating environment and conditions.)

Remarks: Please consult NSK about any unclear beaing specifications.

1. Select the most appropriate bearing with the following selection flow chart.

1 Select the group of bearings appropriate for your operating environment and application.	2 Find the bearings that suit your operating conditions.	Select the bearing most appropriate in terms of availability and price.	Check the operating instructions and notes.
--	--	---	---

									(2) Onerat	ing cond	itions								
	① Operating environment	Product name	Degre	ee of vacuum Pa	Ор	erating t	emperatu C	re	С	eanliness Fed. Sto	S ⁽¹⁾		rotation d _m n	onal speed	Li	miting load	d	3 Price	3 Availability	SpecificationsOperating instructions
	Operating environment	rioddername	Atmospheric pressure	≥10 ⁻⁴ ≥10 ⁻⁸	≤100	≤200	≤300	≤400	Classes 5-6 (100-1 000)	Class 5 (100)	Class 4 (10)	≤20 000	≤50 0	00 ≤150 000	≤1%	≤2%	≤5%	comparison		·Technical data
	For use at atmospheric pressure only	LG2/LGU grease-packed bearings	0				(LG2) °C (LGU)					5	50 000				%	Low	Daga 401 400	Page A45-A46
eanroom	From atmospheric pressure up to vacuum	FG9 fluorine grease-packed bearings	10	o-⁴Pa	2	00 °C	For details, refer to Pag	please e A47.				0					/90		Page A21-A22	Page A47-A48
Clear	Low outgassing and low	V-DFO bearings		10 ⁻⁷ Pa	2	00 °C	For details,	please	(Class 4 (1	0)	20 000				2%			Page A23	Page A49-A50
	particle emissions	E-DFO bearings		10 Fa	150°	С	refer to Pag	e A50.		71a33 + (1		20 000				Ę	5%	High	1 age A20	1 age A45-A50
E.	For use at atmospheric pressure only, up to 230 °C	KPM grease-packed bearings				230 °C						5	000 0			Ę	5%	Low	Page A24	Page A51-A52
High-	From normal atmosphere up to 10° Pa, up to 400 °C	SJ bearings		10-8Pa			400	o°C				20 000			For deta Page A5	ils, please re 5.	fer to		Page A26	Page A55-A56
ten	From normal atmosphere up to 10° Pa, up to 350 °C	YS bearings with spacer joints		10-8Pa			350 °C					20 000			For deta Page A5	ils, please re 3.	fer to	High	Page A25	Page A53-A54
Non- magnetic	Completely non-magnetic (relative permeability 1.001 or less)	All-ceramic bearings	0		150°	C						20 000				Ę	5%	-	Page A19	Page A41-A42
nments		RLS grease-packed bearings			120 °C									350 000			5%	Low	Page A27-A28	Page A58-A59
y enviro	In food processing machinery	High-temperature BL2 grease-packed bearings			2	200 °C								300 000			5%	High	raye Azi-Azo	Fage A36-A39
Sanitar		Molded-Oil™ bearings with food grade lubricant			60 °C							For deta Page A	ails, plea	ase refer to		1 to	5%	-	Page A16	Page A33-A34
Contaminated	Dust, wood waste, etc.	Molded-Oil™ bearings	•		60°C							For detai Page A59	ls, pleas 9.	se refer to)	1 to 5	5%	-	Page A60	Page A59-A60

- (1) Cleanliness is indicated per ISO 14644-1 (values in parentheses refer to former US FED-STD-209E Classes). Cleanliness may vary depending on operating conditions, surrounding structures and other factors.
- $(2)d_{m}n = (bearing bore diameter + bearing outer diameter (mm))$ ÷ 2 × rotational speed (min)⁻¹
- (3) The limiting load is estimated based on endurance (total rotational frequency) corresponding to 107 as a
- P: equivalent load (N), C_H: load rating (N) of stainless steel
- (Durability varies by operating environment and conditions.)

Remarks: Please consult NSK about any unclear bearing specifications.

A7 **NSK**

1. Stainless Steel SPACEA™ Series Bearings

Accuracy of boundary dimensions and running accuracy

Note: The dimensional tolerance of the bore and outside diameter for corrosion-resistant coated bearings may deviate from the JIS Class 0 standard for coating thickness (maximum 5 µm in diameter).

Dimensional accuracy of bore diameter of inner ring

Unit: um

dian	nal bore neter mm)	dian sing	of mean bore neter in a gle plane A _{dmp}		of bore diar single plane V_{dsp} Diameter Se	Mean bore diameter variation (Cylindricity) V_{dmp}	
			Zamp	7, 8, 9	0, 1	2, 3, 4	
Over	Incl	High	Low		Max		Max
2.5	10	0	-8	10	8	6	6
10	18	0	-8	10	8	6	6
18	30	0	-10	13	10	8	8
30	50	0	-12	15	12	9	9

Dimensional accuracy of outside diameter of outer ring

Unit: µm

Nomina	l outside		e mean outside	Mea	an outside d (Out-of-ro	Mean outside			
	neter nm)	of single ou	viation (Deviation utside diameter) 1Dmp		Open		Sealed/ Shielded	diameter variation (Cylindricity) V_{Dmp}	
		2	Diameter Series					<i>• ∪</i> mp	
				7, 8, 9	0, 1	2, 3, 4	2, 3, 4		
Over	Incl	High	Low		Max			Max	
6	18	0	-8	10	8	6	10	6	
18	30	0	-9	12	9	7	12	7	
30	50	0	-11	14	11	8	16	8	
50	80	0	-13	16	13	10	20	10	

Dimensional accuracy of inner/outer ring width

Unit: µm

Nomina diam d (n	neter	outer	f a single inner/ ring width or Δ_{Cs}	Inner/outer ring width variation (Max-min) $V_{B\rm S}$ or $V_{C\rm S}$
Over	Incl	High	Low	Max
2.5	10	0	-120	15
10	18	0	-120	20
18	30	0	-120	20
30	50	0	-120	20

Running accuracy

Unit: µm

Nomina diam d (m	eter	bearing	t of assembled inner ring K _{ia}	Radial runout of assembled bearing outer ring $k_{\rm ea}$
Over	Incl	High	Low	Max
2.5	10	1	0	15
10	18	1	0	15
18	30	1:	3	20
30	50	1:	5	25

Bearing internal clearance and standard values

of SPACEA™ Series Bearings

Internal clearance of bearings refers to the amount that one ring, either the inner or outer, can be displaced relative to the other ring when one is fixed and the other is displaced either vertically or horizontally. The amount of displacement in the radial plane is called radial clearance, while the amount of displacement in the axial plane is called axial

Clearance is measured by adding a specific measuring load to a bearing in order to obtain a stable measured value. As a result, the measured clearance value, or measured internal clearance, becomes slightly larger than the theoretical internal clearance value (also known as geometrical clearance in the case of a radial bearing). The difference is known as the elastic deformation.

Theoretical internal clearance is derived by compensating for clearance caused by elastic

Internal clearance of bearings prior to installation is usually defined by the theoretical internal clearance value.

Radial clearance

Radial internal clearance of nominal bore diameter

Unit: µm

	nal bore meter					Clea	rance				
	mm)	C2		CN		C3		C4		C5	
Over	Incl	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
10 only		0	7	2	13	8	23	14	29	20	37
10	18	0	9	3	18	11	25	18	33	25	45
18	24	0	10	5	20	13	28	20	36	28	48
24	30	1	11	5	20	13	28	23	41	30	53
30	40	1	11	6	20	15	33	28	46	40	64
40	50	1	11	6	23	18	36	30	51	45	73

Remarks When using the above values as measured clearance, the radial clearance caused by the measuring load must be compensated by the clearance compensation values listed in the following table. For compensation values for C2 clearance, the smaller value is applied to the smallest clearance and the larger value is applied to the largest clearance.

Clearance compensation

Unit: µm

diaı	nal bore meter	Measuring load		Clear	ance compensation	value	
Over	(mm) Incl	(N)	C2	CN	C3	C4	C5
10	18	24.5	3–4	4	4	4	4
18	50	49	4–5	5	6	6	6

Radial internal clearance of extra-small ball bearings

Unit: µm

	Clearance code	MC1		MC1 MC2		MC3		MC4		MC5		MC6	
	Clearance	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
		0	5	3	8	5	10	8	13	13	20	20	28

Remarks 1. Standard clearances are MC3.

2. When used as measured internal clearance, add the correction values in the following table.

Clearance correction

Unit: µm

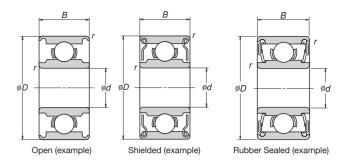
Clearance code	MC1	MC2	MC3	MC4	MC5	MC6
Clearance correction	1	1	1	1	2	2

Remarks The measuring load for an extra-small ball bearing is 4.4 N.

A9 NSK

of SPACEA™ Series Bearings

1-1. Stainless Steel Bearings (Bore Diameter 1–12 mm)


Stocked as standard inventory

Page A29-A30

Inquiry designation⁽¹⁾

Type of inquiry designation	Open	Shielded	Rubber Sealed
(A)	0000 U-H- * MAZ	0000-H-ZZ*MAZ NS7	0000-H-DD*MAZ NS7
(B)	0000 U-H-20T1X*MA	0000 -H-20T1XZZ*MA NS7	0000-H-20T1XDDU*MA NS7

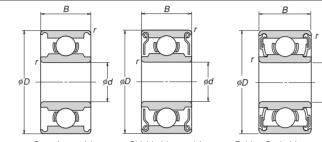
	Boundary of	dimensions			Dynamic		Availability				
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basic designation ⁽²⁾	load rating, C _H (reference value) (N)	Open	Shielded (ZZ)	Rubber sealed (DD)	Limiting speed (reference value) (min-1)	Limiting load ⁽³⁾ (reference value) (N)	Type of inquiry designation
	3	1	0.05	681	81				10 000	4	
1	3	1.5	0.05	MR31	81				10 000	4	
	4	1.6	0.1	691	120				10 000	6	
1.2	4	2.5	0.1	MR41X	96				10 000	4	
•	4	2	0.05	681X	96				10 000	4	
1.5	5	2.6	0.15	691X	202				10 000	10	
	6	3	0.15	601X	281				10 000	14	
	5	2.3	0.08	682	144				10 000	7	
	5	2.5	0.1	MR52	144				10 000	7	
2	6	3	0.15	692	281				10 000	14	
2	6	2.5	0.15	MR62	281				10 000	14	
	7	3	0.15	MR72	328				10 000	16	
	7	3.5	0.15	602	328				10 000	16	
	6	2.6	0.08	682X	177				10 000	8	
2.5	7	3.5	0.15	692X	328				10 000	16	
2.0	8	2.5	0.2	MR82X	475				10 000	23	
	8	4	0.15	602X	469				10 000	23	
	6	2.5	0.1	MR63	177				10 000	8	
	7	3	0.1	683	265		•		10 000	13	
	8	2.5	0.15	MR83	336				10 000	16	
3	8	4	0.15	693	475				10 000	23	(A)
	9	4	0.15	MR93	486				10 000	24	, ,
	9	5	0.15	603	486				10 000	24	
	10	4	0.15	623	538				10 000	26	
	13 7	5	0.2	633	1 100				10 000	55 10	
		2.5	0.1	MR74	217 336				10 000		
	8	3	0.15 0.1	MR84 684	545				10 000	16 27	
	10	4	0.1	MR104	604				10 000	30	
4	11	4	0.2	694	815				10 000	40	
	12	4	0.13	604	815				10 000	40	
	13	5	0.2	624	1 110				10 000	55	
	16	5	0.2	634	1 140				10 000	56	
-	8	2.5	0.1	MR85	185				10 000	9	
	9	3	0.15	MR95	367				10 000	18	
	10	4	0.15	MR105	367				10 000	18	
	11	4	0.15	MR115	609				10 000	30	
5	11	5	0.15	685	609				10 000	30	
J	13	4	0.13	695	916				10 000	45	
	14	5	0.2	605	1 130				10 000	56	
	16	5	0.3	625	1 470				10 000	73	
	19	6	0.3	635	1 990				10 000	99	

	Boundary of	dimensions			Dynamic		Availability		Limitina	Limiting	
Bore diameter d (mm)	Outside diameter D (mm)	Width <i>B</i> (mm)	Chamfer dimension (min.) r (mm)	Basic designation ⁽²⁾	value) (N)	Open	Shielded (ZZ)	Rubber sealed (DD)	speed (reference value) (min ⁻¹)	load ⁽³⁾ (reference value) (N)	Type of inquiry designation
	10	3	0.1	MR106	423				10 000	21	
	12	4	0.2	MR126	608				10 000	30	
	13	5	0.15	686	920				10 000	46	
6	15	5	0.2	696	1 140				10 000	56	
	17	6	0.3	606	1 920				10 000	96	
	19	6	0.3	626	1 990				10 000	99	
	22	7	0.3	636	2 800				10 000	140	
	11	3	0.15	MR117	388				10 000	19	
	13	4	0.15	MR137	460				10 000	23	(A)
7	14	5	0.15	687	1 000				10 000	50	
,	17	5	0.3	697	1 370				10 000	68	
	19	6	0.3	607	1 990				10 000	99	
	22	7	0.3	627	2 800				10 000	140	
	12	3.5	0.15	MR128	463				10 000	23	
	14	4	0.15	MR148	696				10 000	34	
	16	5	0.2	688	1 070				10 000	53	
8	19	6	0.3	698	1 900				10 000	95	
	22	7	0.3	* 608	2 800				10 000	140	(B)
	24	8	0.3	628	2 850				9 370	140	
	28	9	0.3	638	3 890				8 330	190	
	17	5	0.2	689	1 130				10 000	56	
	20	6	0.3	699	2 100				10 000	100	
9	24	7	0.3	609	2 850				9 090	140	(A)
	26	8	0.6	629	3 890				8 570	190	
	30	10	0.6	639	4 350				7 690	210	
	15	3 4	0.15	6700	729			•	10 000	36	
40	19	5	0.3	* 6800	1 460				10 000	73	
10	22	6	0.3	* 6900	2 290				9 370	110	(D)
	26	8	0.3	* 6000	3 900				8 330	190	(B)
	30	9	0.6	* 6200	4 350				7 500	210]
	18	4	0.2	6701	789				10 000	39	(A)
	21	5	0.3	* 6801	1 630				9 090	82	
12	24	6	0.3	* 6901	2 460				8 330	120	(B)
	28	8	0.3	* 6001	4 350				7 500	210	(B)
	32	10	0.6	* 6201	5 800				6 810	290	

Mark: Stocked as standard inventory. (4)

- Notes (1) The actual designation may differ from the inquiry designation. [][][] indicates the basic designation.
 - (2) An asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.
 - (3) Limiting load values are for reference only; they are not guaranteed.
 - (4) Orders for standard inventory may be delayed, particularly if shipped from Japan.
- Remarks 1. Open bearings do not include grease. Ensure that an appropriate lubricant is used with these bearings.
 - 2. The radial internal clearance for bearings with bore diameters smaller than 10 mm is MC3. The radial internal clearance for bearings with bore diameters of 10 mm or larger is CN. See the radial internal clearance tables on Page A10 for further details.

of SPACEA™ Series Bearings


1-1. Stainless Steel Bearings (Bore Diameter 15–60 mm)

Stocked as standard

Page A29-A30

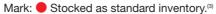
Inquiry designation⁽¹⁾

Type of inquiry designation	Open	Shielded	Rubber Sealed
(A)	0000 U-H- * MAZ	0000-H-ZZ*MAZ NS7	0000-H-DD*MAZ NS7
(B)	0000 U-H-20T1X * MA	0000-H-20T1XZZ*MA NS7	□□□□ -H-20T1XDDU *MA NS7

							Ор	en (example)	Shielde	d (example)	Rubber Se	ealed (example)
	Boundary of	dimensions				Dynamic		Availability		Limiting	Limiting	
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)		Basic gnation [©]	load rating, C _H (reference value) (N)	Open	Shielded (ZZ)	Rubber sealed (DD)	speed (reference value) (min ⁻¹)	load ⁽³⁾ (reference value) (N)	Type of inquiry designation
	21	4	0.2		6702	797				8 330	40	(A)
	24	5	0.3	*	6802	1 760				7 690	88	
15	28	7	0.3	*	6902	3 700				6 970	180	(B)
	32	9	0.3	*	6002	4 750				6 380	230	(D)
	35	11	0.6	*	6202	6 500				6 000	320	
	23	4	0.2		6703	849				7 500	42	(A)
	26	5	0.3	*	6803	2 240				6 970	110	
17	30	7	0.3	*	6903	3 900				6 380	190	(B)
	35	10	0.3	*	6003	5 100				5 760	250	(b)
	40	12	0.6	*	6203	8 150				5 260	400	
	27	4	0.2		6704	885				6 380	44	(A)
	32	7	0.3	*	6804	3 400				5 760	170	
20	37	9	0.3	*	6904	5 400				5 260	270	(B)
	42	12	0.6	*	6004	7 950				4 830	390	(b)
	47	14	1	*	6204	10 900				4 470	540	
	32	4	0.2		6705	931			(4)	5 260	47	(A)
	37	7	0.3	*	6805	3 800				4 830	190	
25	42	9	0.3	*	6905	5 950				4 470	290	(B)
	47	12	0.6	*	6005	8 550				4 160	420	(D)
	52	15	1	*	6205	11 900				3 890	590	
	37	4	0.2		6706	969				4 470	48	(A)
30	55	13	1	*	6006	11 300				3 520	560	(B)
	62	16	1	*	6206	16 500				3 260	820	
	44	5	0.3		6707	1 590				3 790	79	(A)
35	62	14	1	*	6007	13 600				3 090	680	(B)
	72	17	1.1	*	6207	21 800				2 800	1 090	
	50	6	0.3		6708	2 140				3 330	100	(A)
40	68	15	1	*	6008	14 200				2 770	710	
	80	18	1.1	*	6208	24 800				2 500	1 240]
45	75	16	1	*	6009	17 800				2 500	890	
	85	19	1.1	*	6209	26 600				2 300	1 330]
50	80	16	1	*	6010	18 500				2 300	920	(B)
	90	20	1.1	*	6210	29 800				2 140	1 490	(5)
55	90	18	1.1	*	6011	24 000				2 060	1 200	_
	100	21	1.5	*	6211	37 000				1 930	1 850]
60	95	18	1.1	*	6012	25 000				1 930	1 250	

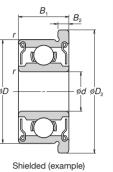
Mark: Stocked as standard inventory. (5)

- Notes (1) The actual designation may be differ from the inquiry designation. [][][] indicates the basic designation.
 - (2) An asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.
 - (3) Limiting load values are for reference only; they are not guaranteed.
 - (4) Uses non-contact seals.
 - (5) Orders for standard inventory may be delayed, particularly if shipped from Japan.
- Remarks 1. Open bearings do not include grease. Ensure that an appropriate lubricant is used with these bearings.
 - 2. The radial internal clearance for the bearings on this page is CN. See the radial internal clearance tables on Page A10 for further details.


1-2. Stainless Steel Bearings (with flanged outer ring)

Stocked as standard

Page A29-A30

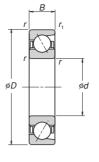

 Inquiry designation⁽¹⁾ 0000-H-ZZ*MAZ NS7

		Boundary	dimensions				Dynamic load rating,		Limiting	Limiting
Bore	Outside	Width	Flanged Outside	Flanged	Chamfer dimension	Basic	C _H	Availability	speed	load ⁽²⁾
iameter	diameter		diameter	width	(min.)	designation	(reference	Availability	(reference value)	(reterence value)
d (mm)	(mm)	<i>B</i> ₁ (mm)	D ₂ (mm)	<i>B</i> ₂ (mm)	(mm)		value) (N)		(min ⁻¹)	(N)
(11111)	4	2	5	` '	0.05	EC04V	96		10 000	4
1.5	5	2.6	6.5	0.6 0.8	0.05	F681X F691X	202		10 000	10
1.5	6	3	7.5	0.8	0.15	F601X	281		10 000	14
	5	2.3	6.1	0.6	0.13	F682	144		10 000	7
	5	2.5	6.2	0.6	0.00	MF52	144		10 000	7
2	6	3	7.5	0.8	0.15	F692	281		10 000	14
-	7	3	8.2	0.6	0.15	MF72	328		10 000	16
	7	3.5	8.5	0.9	0.15	F602	328		10 000	16
	6	2.6	7.1	0.8	0.08	F682X	177		10 000	8
2.5	7	3.5	8.5	0.9	0.15	F692X	328		10 000	16
	8	4	9.5	0.9	0.15	F602X	469		10 000	23
	6	2.5	7.2	0.6	0.1	MF63	177		10 000	8
	7	3	8.1	0.8	0.1	F683	265		10 000	13
0	8	4	9.5	0.9	0.15	F693	475		10 000	23
3	9	4	10.6	0.8	0.15	MF93	486		10 000	24
	9	5	10.5	1	0.15	F603	486		10 000	24
	10	4	11.5	1	0.1	F623	538		10 000	26
	7	2.5	8.2	0.6	0.1	MF74	217		10 000	10
	8	3	9.2	0.6	0.15	MF84	336		10 000	16
	9	4	10.3	1	0.1	F684	545		10 000	27
4	10	4	11.6	8.0	0.2	MF104	604		10 000	30
4	11	4	12.5	1	0.15	F694	815		10 000	40
	12	4	13.5	11	0.2	F604	815		10 000	40
	13	5	15	1	0.2	F624	1 110		10 000	55
	16	5	18	11	0.3	F634	1 140		10 000	56
	8	2.5	9.2	0.6	0.1	MF85	185		10 000	9
	9	3	10.2	0.6	0.15	MF95	367		10 000	18
	10	4	11.6	8.0	0.15	MF105	367		10 000	18
5	11	5	12.5		0.15	F685	609		10 000	30
	13	4	15		0.2	F695	916		10 000	45
	14	5	16	1	0.2	F605	1 130		10 000	56
	16	5	18	1	0.3	F625	1 470		10 000	73
	19	6	22	1.5	0.3	F635	1 990		10 000	99
	10 12	3	11.2	0.6	0.15	MF106	423		10 000 10 000	21
		4	13.6	0.8	0.2	MF126	608		10 000	30 46
6	13	5	15	1.1	0.15	F686 F696	920			
	15 17	5 6	17 19	1.2 1.2	0.2	F606	1 140		10 000 10 000	56 96
	19	6	22		0.3	F626	1 920		10 000	99
	11	3	12.2	1.5 0.6	0.3	MF117	1 990 388		10 000	19
	13	4	14.6		0.15	MF137	460		10 000	23
	14	5	16	0.8 1.1	0.15	F687	1 000		10 000	50
7	17	5	19	1.1	0.15 0.3	F697	1 370		10 000	68
	19	6	22	1.5	0.3	F607	1 990		10 000	99
	22	7	25	1.5	0.3	F627	2 800		10 000	140
	12	3.5	13.6	0.8	0.15	MF128	463		10 000	23
	14	4	15.6	0.8	0.15	MF148	696		10 000	34
8	16	5	18	1.1	0.13	F688	1 070		10 000	53
•	19	6	22	1.5	0.2	F698	1 900		10 000	95
	22	7	25	1.5	0.3	F608	2 800		10 000	140
	17	5	19	1.1	0.3	F689	1 130		10 000	56
9	20	6	23	1.5	0.2	F699	2 100		10 000	100
10	19	5	21	1.5	0.3	F6800	1 460		10 000	73

Notes (1) The actual designation may be differ from the inquiry designation. [][][] indicates the basic designation.

- (2) Limiting load values are for reference only; they are not guaranteed.
- (3) Orders for standard inventory may be delayed, particularly if shipped from Japan.
- Remarks 1. The radial internal clearance for bearings with bore diameters smaller than 10 mm is MC3. The radial internal clearance for bearings with bore diameters of 10 mm or larger is CN. See the radial internal clearance tables on Page A10 for further details.
 - 2. Shielded bearings are standard.

Inquiry designation⁽¹⁾


Dimensions, Accuracy, and Availability

2. Stainless Steel Angular Contact Ball Bearings

Stocked as standard

Page A31

. , ,	
For atmospheric pressure environments	For vacuum environments
0000 -H-20TYNSULP5	0000 -H-20(T4N)SULP5U264

	Bou	ndary dimens	sions			Dynamic	Availa	ability	Limiting	Limiting
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Chamfer dimension (min.) r ₁ (mm)	Basic designation ⁽²⁾	load rating, C _H (reference value) (N)	For use in atmospheric pressure and cleanroom environments	For use in vacuum, cleanroom and high-temperature environments	speed (reference value) (min-1)	Limiting load ⁽³⁾ (reference value) (N)
6	17	6	0.3	0.15	* 706A	1 730			10 000	86
8	22	7	0.3	0.15	* 708A	2 840			10 000	140
10	26	8	0.3	0.15	* 7000A	4 250			8 330	210
12	28	8	0.3	0.15	* 7001A	4 600			7 500	230
	28	7	0.3	0.15	* 7902A5	3 850			6 970	190
15	32	9	0.3	0.15	* 7002A	4 900			6 380	240
	35	11	0.6	0.3	* 7202A	6 900			6 000	340
17	35	10	0.3	0.15	* 7003A	5 200			5 760	260
	37	9	0.3	0.15	* 7904A5	5 600		•	5 260	280
20	42	12	0.6	0.3	* 7004A	8 750			4 830	430
	47	14	1	0.6	* 7204A	11 600		•	4 470	580
	47	12	0.6	0.3	* 7005A	9 150			4 160	450
25	52	15	1	0.6	* 7205A	13 100		•	3 890	650
30	47	9	0.3	0.15	* 7906A5	6 700			3 890	330

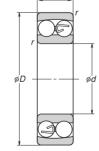
Mark: Stocked as standard inventory. (4)

Notes (1) The actual designation may differ from the inquiry designation. [100] indicates the basic designation.

- (2) An asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.
- (3) Limiting load values are for reference only; they are not guaranteed.
- (4) Orders for standard inventory may be delayed, particularly if shipped from Japan.

Remarks: Ensure that an appropriate lubricant is used with these bearings.

3. Stainless Steel Self-Aligning Ball Bearings


Stocked as standard

Page A32

Inquiry designation⁽¹⁾

0000 **-H-20**

	Boundary of	dimensions			Dynamic		Limitina	Limiting	Radial
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basic designation ⁽²⁾	load rating, C _H (reference value) (N)	Availability	speed (reference value) (min ⁻¹)	load ⁽³⁾ (reference value) (N)	internal clearance (mm)
10	30	9	0.6	* 1200	4 750		7 500	230	0.006-0.017
12	32	10	0.6	* 1201	4 850		6 810	240	0.006-0.019
15	35	11	0.6	* 1202	6 450		6 000	320	0.008-0.021
17	40	12	0.6	* 1203	6 800		5 260	340	0.008-0.021
20	47	14	1	* 1204	8 500		4 470	420	0.010-0.023
25	52	15	1	* 1205	10 400		3 890	520	0.011-0.024

Mark: Stocked as standard inventory. (4)

Notes (1) The actual designation may differ from the inquiry designation. [IIIII] indicates the basic designation.

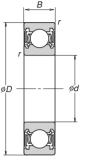
- (2) An asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.
- (3) Limiting load values are for reference only; they are not guaranteed.
- (4) Orders for standard inventory may be delayed, particularly if shipped from Japan.

Remarks: Ensure that an appropriate lubricant is used with these bearings.

of SPACEA™ Series Bearings

4. Molded-Oil™ Bearings

Stocked as standard


Available on a production

Page A33-A34

Inquiry designation⁽¹⁾

General grade lubricant	Food grade lubricant					
0000 L11-H-20DDU GVS	0000 L21-H-20DDUU401 GVS					

	Boundary of	dimensions				Availa	ability	Limiting	Applied
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.)	Basic designation [©]		General grade lubricant	Food grade lubricant	speed ⁽³⁾ (reference value) (min ⁻¹)	load ⁽⁴⁾ (reference value) (N)
	22	6	0.3	*	6900	•	0	9 370	23 – 110
10	26	8	0.3	*	6000		0	8 330	39 – 190
	30	9	0.6	*	6200		0	7 500	44 – 210
	24	6	0.3	*	6901		\circ	8 330	25 – 120
12	28	8	0.3	*	6001		\circ	7 500	44 – 210
	32	10	0.6	*	6201		0	6 810	58 – 290
15	32	9	0.3	*	6002		\circ	6 380	48 – 230
15	35	11	0.6	*	6202		\circ	6 000	65 – 320
17	35	10	0.3	*	6003		\bigcirc	5 760	51 – 250
17	40	12	0.6	*	6203		\circ	5 260	82 – 400
20	42	12	0.6	*	6004		Ö	4 830	80 – 390
20	47	14	1	*	6204		Ó	4 470	110 - 540
0E	47	12	0.6	*	6005		O	4 160	86 – 420
25	52	15	1	*	6205			3 890	120 - 590
30	55	13	1	*	6006		0	3 520	120 - 560

Rubber Sealed (example)

Mark: Stocked as standard inventory. (5)

- Notes (1) The actual designation may differ from the inquiry designation. [IIIII] indicates the basic designation.
 - (2) An asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.
 - (3) The limiting speed of these bearings has been calculated for 25 °C operating conditions. Limiting speeds will be slower for operating conditions of 35 °C or highter. (Refer to Page A33 for further details.)
 - (4) Applied load values are for reference only; they are not guaranteed.
 - (5) Orders for standard inventory may be delayed, particularly if shipped from Japan.
- Remarks 1. The radial internal clearance for the bearings on this page is CN. See the radial internal clearance tables on Page A10 for further details.
 - 2. Rubber contact seals are standard.

of SPACEA™ Series Bearings

5. Hybrid Bearings

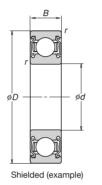
Available on a production-

Page A35-A36

Inquiry designation⁽¹⁾

0000-H-20SN14T36ZZU76A GVS

Dimensions, accuracy, and availability are listed in the next section.


6. Corrosion-Resistant Coated Bearings

ailable on a production

Page A37-A38

 Inquiry designation⁽¹⁾ U- 0000 -H-20SN14S5NYT36ZZU76A GVS

	Boundary of	dimensions				Availa	ability	Limiting	Limiting
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basic designation ⁽²⁾		Hybrid bearings	, icolotant		load ⁽³⁾ (reference value) (N)
10	26	8	0.3	*	6000	\circ		1 000	78
10	30	9	0.6	*	6200	\circ	\circ	1 000	87
12	28	8	0.3	*	6001			1 000	87
12	32	10	0.6	*	6201	\circ		900	110
15	32	9	0.3	*	6002			850	95
	35	11	0.6	*	6202			800	130
17	35	10	0.3	*	6003			760	100
17	40	12	0.6	*	6203			700	160
	37	9	0.3	*	6904	\bigcirc	\bigcirc	700	100
20	42	12	0.6	*	6004			640	150
	47	14	1	*	6204			590	210
	42	9	0.3	*	6905			590	110
25	47	12	0.6	*	6005	Ö	O	550	170
	52	15	1	*	6205	0	0	510	230
30	55	13	1	*	6006	0		470	220

Mark: Available on a production-by-order basis.

Notes (1) The actual designation may differ from the inquiry designation. [][][] indicates the basic designation.

(2) An asterisk (*) indicated that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.

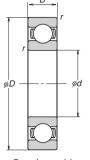
(3) Limiting load values are for reference only; they are not guaranteed.

Remarks 1. The radial internal clearance for the bearings on this page ranges from CN (minimum clearance) to C3 (maximum clearance). See the radial internal clearance tables on Page A10 for further details.

2. Shielded bearings are standard.

7. ESZ Bearings

Available on a production-

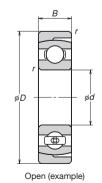

Page A39-A40

Deep Groove Ball Bearings

Inquiry designation⁽¹⁾

ESZ 0000

Boundary dimensions		Poundani	dimonolono					
10 30 9 0.6 6200 1 000 87 12 28 8 0.3 6001 1 000 87 12 32 10 0.6 6201 900 110 15 32 9 0.3 6002 850 95 35 11 0.6 6202 800 130 17 40 12 0.6 6203 700 160 20 42 12 0.6 6203 700 160 20 47 14 1 6204 590 210 25 47 12 0.6 6005 550 170 25 47 12 0.6 6005 550 170 25 15 1 6205 510 230 30 62 16 1 6205 430 330 35 62 14 1 6007 41	diameter d	Outside diameter D	Width <i>B</i>	dimension (min.) r		Availability	speed (reference value)	load ⁽²⁾ (reference value)
30 9 0.6 6200 1 000 87 12 28 8 0.3 6001 1 000 87 32 10 0.6 6201 900 110 15 32 9 0.3 6002 850 95 35 11 0.6 6202 800 130 17 35 10 0.3 6003 760 100 40 12 0.6 6203 700 160 20 42 12 0.6 6004 640 150 25 47 12 0.6 6004 590 210 25 47 12 0.6 6005 550 170 30 55 13 1 6006 470 220 62 16 1 6206 430 330 35 62 14 1 6007 410 270 <td< td=""><td>10</td><td>26</td><td>8</td><td>0.3</td><td>6000</td><td>0</td><td>1 000</td><td>78</td></td<>	10	26	8	0.3	6000	0	1 000	78
12 32 10 0.6 6201 900 110 15 32 9 0.3 6002 850 95 35 11 0.6 6202 800 130 17 35 10 0.3 6003 760 100 20 42 12 0.6 6203 700 160 20 47 14 1 6204 590 210 25 47 12 0.6 6005 550 170 25 52 15 1 6205 510 230 30 55 13 1 6006 470 220 35 62 16 1 6206 430 330 35 62 14 1 6007 370 430 40 68 15 1 6008 370 280 40 80 18 1.1 6208 <td>10</td> <td>30</td> <td>9</td> <td>0.6</td> <td>6200</td> <td></td> <td>1 000</td> <td>87</td>	10	30	9	0.6	6200		1 000	87
32 10 0.6 6201 900 110 15 32 9 0.3 6002 850 95 35 11 0.6 6202 800 130 17 35 10 0.3 6003 760 100 40 12 0.6 6203 700 160 20 42 12 0.6 6004 640 150 47 14 1 6204 590 210 25 47 12 0.6 6005 550 170 25 47 12 0.6 6005 550 170 25 15 1 6205 510 230 30 55 13 1 606 470 220 30 62 16 1 6206 430 330 35 72 17 1.1 6207 370 430 40	10	28	8	0.3	6001	0	1 000	87
15 35 11 0.6 6202 800 130 17 35 10 0.3 6003 760 100 40 12 0.6 6203 700 160 20 42 12 0.6 6004 640 150 47 14 1 6204 590 210 25 47 12 0.6 6005 550 170 25 47 12 0.6 6005 550 170 25 52 15 1 6205 510 230 30 55 13 1 6006 470 220 62 16 1 6206 430 330 35 62 14 1 6007 410 270 40 68 15 1 6008 370 280 45 75 16 1 6009 330 350 </td <td>12</td> <td>32</td> <td>10</td> <td>0.6</td> <td>6201</td> <td>\circ</td> <td>900</td> <td>110</td>	12	32	10	0.6	6201	\circ	900	110
17	15	32	9	0.3	6002	\circ	850	95
17 40 12 0.6 6203 700 160 20 42 12 0.6 6004 640 150 20 47 14 1 6204 590 210 25 47 12 0.6 6005 550 170 25 52 15 1 6205 510 230 30 55 13 1 6006 470 220 30 62 16 1 6206 430 330 35 62 14 1 6007 410 270 35 72 17 1.1 6207 370 430 40 68 15 1 6008 370 280 40 80 18 1.1 6208 330 490 45 75 16 1 6009 330 350 50 80 16 1	15	35	11	0.6	6202		800	130
20 42 12 0.6 6203 700 160 20 42 12 0.6 6004 640 150 25 47 14 1 6204 590 210 25 47 12 0.6 6005 550 170 30 52 15 1 6205 510 230 30 62 16 1 6006 470 220 35 62 14 1 6007 410 270 35 72 17 1.1 6207 370 430 40 68 15 1 6008 370 280 40 80 18 1.1 6208 330 490 45 75 16 1 6009 330 350 50 80 16 1 6010 300 370 50 90 20 1.1 6210 280 590 55 90 18 1.1 6011 </td <td>17</td> <td>35</td> <td>10</td> <td>0.3</td> <td>6003</td> <td></td> <td>760</td> <td>100</td>	17	35	10	0.3	6003		760	100
20 47 14 1 6204 590 210 25 47 12 0.6 6005 550 170 52 15 1 6205 510 230 30 55 13 1 6006 470 220 62 16 1 6206 430 330 35 62 14 1 6007 410 270 72 17 1.1 6207 370 430 40 68 15 1 6008 370 280 40 80 18 1.1 6208 330 490 45 75 16 1 6009 330 350 50 80 16 1 6010 300 370 50 90 20 1.1 6210 280 590 55 90 18 1.1 6011 270 480 <td>17</td> <td>40</td> <td>12</td> <td>0.6</td> <td>6203</td> <td></td> <td>700 16</td> <td>160</td>	17	40	12	0.6	6203		700 16	160
25 47 12 0.6 6005 550 170 25 52 15 1 6205 510 230 30 55 13 1 6006 470 220 35 62 16 1 6206 430 330 35 72 17 1.1 6207 370 430 40 68 15 1 6008 370 280 40 80 18 1.1 6208 330 490 45 75 16 1 6009 330 350 50 80 16 1 6009 300 530 50 90 20 1.1 6210 280 590 55 90 18 1.1 6011 270 480 50 95 18 1.1 6012 250 500	20	42	12	0.6	6004		640	150
25 52 15 1 6205 510 230 30 55 13 1 6006 470 220 62 16 1 6206 430 330 35 62 14 1 6007 410 270 72 17 1.1 6207 370 430 40 68 15 1 6008 370 280 80 18 1.1 6208 330 490 45 75 16 1 6009 330 350 50 85 19 1.1 6209 300 530 50 90 20 1.1 6210 280 590 55 90 18 1.1 6011 270 480 60 95 18 1.1 6012 250 500		47	14	1	6204		590	210
30 55 13 1 6006 470 220 30 62 16 1 6206 430 330 35 62 14 1 6007 410 270 40 68 15 1 6008 370 280 40 80 18 1.1 6208 330 490 45 75 16 1 6009 330 350 50 85 19 1.1 6209 300 530 50 80 16 1 6010 300 370 50 90 20 1.1 6210 280 590 55 90 18 1.1 6011 270 480 60 95 18 1.1 6012 250 500	25	47	12	0.6	6005	0	550	170
30 62 16 1 6206 430 330 35 62 14 1 6007 410 270 72 17 1.1 6207 370 430 40 68 15 1 6008 370 280 80 18 1.1 6208 330 490 45 75 16 1 6009 330 350 85 19 1.1 6209 300 530 50 80 16 1 6010 300 370 50 90 20 1.1 6210 280 590 55 90 18 1.1 6011 270 480 50 95 18 1.1 6012 250 500	25	52	15	1	6205	0	510	230
62 16 1 6206 430 330 35 62 14 1 6007 410 270 72 17 1.1 6207 370 430 40 68 15 1 6008 370 280 80 18 1.1 6208 330 490 45 75 16 1 6009 330 350 85 19 1.1 6209 300 530 50 80 16 1 6010 300 370 50 90 20 1.1 6210 280 590 55 90 18 1.1 6011 270 480 50 95 18 1.1 6012 250 500	20	55	13	1	6006	0	470	220
35 72 17 1.1 6207 370 430 40 68 15 1 6008 370 280 80 18 1.1 6208 330 490 45 75 16 1 6009 330 350 85 19 1.1 6209 300 530 50 80 16 1 6010 300 370 90 20 1.1 6210 280 590 55 90 18 1.1 6011 270 480 50 95 18 1.1 6012 250 740	30	62	16	1	6206		430	330
40 68 15 1 6008 370 280 80 18 1.1 6208 330 490 45 75 16 1 6009 330 350 85 19 1.1 6209 300 530 50 80 16 1 6010 300 370 90 20 1.1 6210 280 590 55 90 18 1.1 6011 270 480 50 95 18 1.1 6012 250 740	25	62	14	1	6007	0	410	270
40 80 18 1.1 6208 330 490 45 75 16 1 6009 330 350 85 19 1.1 6209 300 530 50 80 16 1 6010 300 370 90 20 1.1 6210 280 590 55 90 18 1.1 6011 270 480 55 100 21 1.5 6211 250 740 60 95 18 1.1 6012 250 500	33	72	17	1.1	6207	0	370	430
80 18 1.1 6208 330 490 45 75 16 1 6009 330 350 85 19 1.1 6209 300 530 50 80 16 1 6010 300 370 90 20 1.1 6210 280 590 55 90 18 1.1 6011 270 480 55 100 21 1.5 6211 250 740 60 95 18 1.1 6012 250 500	40	68	15	1	6008	0	370	280
45 85 19 1.1 6209 300 530 50 80 16 1 6010 300 370 90 20 1.1 6210 280 590 55 90 18 1.1 6011 270 480 55 100 21 1.5 6211 250 740 60 95 18 1.1 6012 250 500	40	80	18	1.1	6208		330	490
85 19 1.1 6209 300 530 50 80 16 1 6010 300 370 90 20 1.1 6210 280 590 55 90 18 1.1 6011 270 480 100 21 1.5 6211 250 740 60 95 18 1.1 6012 250 500	A.E.	75	16	1	6009	0	330	350
50 90 20 1.1 6210 280 590 55 90 18 1.1 6011 270 480 55 100 21 1.5 6211 250 740 60 95 18 1.1 6012 250 500	45	85	19	1.1	6209	0	300	530
90 20 1.1 6210 280 590 55 90 18 1.1 6011 270 480 100 21 1.5 6211 250 740 60 95 18 1.1 6012 250 500	50	80	16	1	6010	0	300	370
55 100 21 1.5 6211 250 740 60 95 18 1.1 6012 250 500	50	90	20	1.1	6210	0	280	590
100 21 1.5 6211 250 740 60 95 18 1.1 6012 250 500	55	90	18	1.1	6011	0	270	480
60	33	100	21	1.5	6211		250	740
00 110 22 15 6212 0 200		95	18	1.1	6012	0	250	500
110 22 1.5 6212		110	22	1.5	6212	0	230	890


Open (example)

Deep Groove Ball Bearings With Aligning Housing Ring

Inquiry designation⁽¹⁾

ESZ 0000

		Boundary	dimensions				Limitina	Limiting
diar	ore meter d nm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basic designation	Availability	speed (reference value) (min-1)	load ⁽²⁾ (reference value) (N)
	10	35	9	0.6	CD200	0	1 000	87
	12	37	10	0.6	CD201	0	900	110
	15	40	11	0.6	CD202	0	800	130
	17	46	12	0.6	CD203	0	700	160
2	20	54	14	1	CD204		590	210
	25	60	15	1	CD205	0	510	230
-	30	72	16	1	CD206		430	330

Mark: O Available on a production-by-order basis.

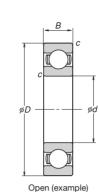
Note (1) The actual designation may differ from the inquiry designation. [][][] indicates the basic designation.

(2) Limiting load values are for reference only; they are not guaranteed.

Remarks 1. The radial internal clearance for the bearings on this page is C3. See the radial internal clearance tables on Page A10 for further details.

2. Open bearings are standard.

of SPACEA™ Series Bearings


8. All-Ceramic Bearings

Available on a production-by-order basis

Page A41-A42

 Inquiry designation⁽¹⁾ 0000 **SZ1T36**

	Boundary of	dimensions				Limitina	Limiting
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basic designation	Availability	speed (reference value) (min-1)	load ⁽²⁾ (reference value) (N)
8	22	7	0.3	608	0	1 000	140
10	19	5	0.3	6800		1 000	73
10	26	8	0.3	6000		1 000	190
12	28	8	0.3	6001		1 000	210
20	42	12	0.6	6004		640	390
20	47	14	1	6204	Ó	590	540
30	62	16	1	6206		430	820
40	68	15	1	6008		370	710

Mark: Available on a production-by-order basis.

Note (1) The actual designation may differ from the inquiry designation. [][][] indicates the basic designation.

(2) Limiting load values are for reference only; they are not guaranteed.

Remarks 1. The radial internal clearance for bearings with bore diameters smaller than 10 mm ranges from MC3 (minimum clearance) to MC5 (maximum clearance). The radial internal clearance for bearings with bore diameters of 10 mm or larger ranges from CN (minimum clearance) to C4 (maximum clearance). See the radial internal clearance tables on Page A10 for further details.

2. Open bearings are standard.

9. Aqua-Bearing™

Available on a production-by-order basis

Page A43-A44

 Inquiry designation⁽¹⁾ 0000 **L-PT3**

Boundary dimensions® Bore diameter diameter diameter d D B B Chamfer dimension (min.) Bore diameter diameter dimension (min.) Availability Limiting speed (reference value) Availability (reference value) Availability (reference value)	r
(mm) (mm) (mm) (mm) (mm) (mm) (min ⁻¹) (N) (mm)	r
22 6 0.3 6900 1 000 22	# # ø'c
10 26 8 0.3 6000 1 000 39 0.04-0.12	
30 9 0.6 6200	
12 28 8 0.3 6001 1 000 43 0.05-0.14	
32 10 0.6 6201 900 58 0.03-0.14	
15 32 9 0.3 6002 0 850 47 0.05-0.14 Open (examp	pen (example)
35 11 0.6 6202 0 800 65 0.03-0.14	
37 9 0.3 6904 0 700 54	
20 42 12 0.6 6004	
47 14 1 6204 590 100	
25 42 9 0.3 6905 590 59 0.06-0.16	
47 12 0.6 6005 550 85 0.06-0.16	

Mark: Available on a production-by-order basis.

Notes (1) The actual designation may be differ from the inquiry designation. [][[][] indicates the basic designation.

(2) Tolerances: bore diameter: 0 mm to +0.05 mm; outer diameter: -0.05 mm to 0 mm

(3) Limiting load values are for reference only; they are not guaranteed.

Remarks: Open bearings are standard.

10. LG2/LGU Grease-Packed Bearings

Stocked as standard

Available on a productionby-order basis

Page A45-A46

Inquiry designation⁽¹⁾

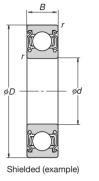
Type of inquiry designation	LG2 Grease-Packed Bearing	LGU Grease-Packed Bearing
(4)	Availability • : 0000 -H-ZZU76 LG2L	0000 L-ZZ-H LGUL
(A)	Availability : 0000 LZZ-H LG2L	UUUU L-22-H LGOL
(B)	Availability : 0000 -H-ZZU76 LG2L	0000 -H-20ZZU76A LGUL
(B)	Availability : [][][] -H-20ZZU76A LG2L	111111 -H-2022076A LGUL

Dimensions, accuracy, and availability are listed in the next section.

11. FG9 Fluorine Grease-Packed Bearings

Available on a production-

Page A47-A48


Inquiry designation⁽¹⁾

Type of inquiry designation	FG9 Grease-Packed Bearing					
(A)	0000 LZZ-H FG9					
(B)	0000 -H-20ZZU552 FG9					

		Boundary of	dimensions				Availability		Limiting	Limiting	
	Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.)	Basic designation ⁽²⁾	LG2 grease	LGU grease	FG9 grease	speed (reference value) (min-1)	load ⁽³⁾ (reference value) (N)	Type of inquiry designation
		6	2.5	0.1	MR63	•			1 000	8	
	3	8	4	0.15	693	•			1 000	23	
		10	4	0.15	623	•			1 000	26	
		7	2.5	0.1	MR74	•			1 000	10	
		9	4	0.1	684	•	0	0	1 000	27	
	4	11	4	0.15	694	•	0	0	1 000	40	
		12	4	0.2	604	•	0	0	1 000	40	
		13	5	0.2	624	•	0	0	1 000	55	
		11	5	0.15	685	\circ	\circ		1 000	30	
		13	4	0.2	695	•	\bigcirc		1 000	45	(A)
5	14	5	0.2	605	•	0	0	1 000	56		
		16	5	0.3	625	•	\circ		1 000	73	
		13	5	0.15	686	•	\circ		1 000	46	
	6	15	5	0.2	696	•	0	0	1 000	56	
	0	17	6	0.3	606	•	0	0	1 000	96	
		19	6	0.3	626	•	\circ		1 000	99	
		14	5	0.15	687	•	0	0	1 000	50	
		17	5	0.3	697	•	0	0	1 000	68	
	7	19	6	0.3	607	•	0	0	1 000	99	
		22	7	0.3	* 627	0	0	0	1 000	140	(B)
		16	5	0.2	688	•	0		1 000	53	(4)
	0	19	6	0.3	698	•	0	0	1 000	95	(A)
	9	22	7	0.3	* 608	•	0	0	1 000	140	(B)
		24	8	0.3	628	•	0		1 000	140	
		17	5	0.2	689	•	0	0	1 000	56	(A)
		20	6	0.3	699	0	0		1 000	100	
		24	7	0.3	* 609	0	0	0	1 000	140	
		26	8	0.6	* 629	0		0	1 000	190	(B)
	9.525	22.225	7.142	0.4	* R6	0	0	0	1 000	140	

Mark: Stocked as standard inventory. (4) Available on a production-by-order basis.

Notes (1) The actual designation may differ from the inquiry designation. [][][] indicates the basic designation.

	Boundary	dimensions					Availability		Limiting	Limiting	
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)		asic Ination ⁽²⁾	LG2 grease	LGU grease	FG9 grease	speed (reference value) (min-1)	load ⁽³⁾ (reference value) (N)	Type of inquiry designation
	19	5	0.3	*	6800	•	0	0	1 000	73	
40	22	6	0.3	*	6900	•	Ö	Ö	1 000	110	
10	26	8	0.3	*	6000	•	Ō	O	1 000	190	
	30	9	0.6	*	6200	•	0	0	1 000	210	
	21	5	0.3	*	6801	•	0	0	1 000	82	
12	24	6	0.3	*	6901	•	0	0	1 000	120	
12	28	8	0.3	*	6001	•			1 000	210	
	32	10	0.6	*	6201	•			1 000	290	
	24	5	0.3	*	6802	0		0	1 000	88	
15	28	7	0.3	*	6902	•	0	0	1 000	180	
15	32	9	0.3	*	6002	•	0	0	1 000	230	
	35	11	0.6	*	6202	•	0	0	1 000	320	(D)
	26	5	0.3	*	6803	0	0	0	1 000	110	(B)
17	30	7	0.3	*	6903	•	O	O	1 000	190	
17	35	10	0.3	*	6003	•	O	O	1 000	250	
	40	12	0.6	*	6203	•	O	0	1 000	400	
	32	7	0.3	*	6804	•	0	0	1 000	170	
00	37	9	0.3	*	6904	•	O	O	1 000	270	
20	42	12	0.6	*	6004	•	0	0	1 000	390	
	47	14	1	*	6204	•	0	0	1 000	540	
	37	7	0.3	*	6805	0	0	0	1 000	190	
05	42	9	0.3	*	6905	•	O	0	1 000	290	
25	47	12	0.6	*	6005	•	O	0	1 000	420	
	52	15	1	* (6205	•	O	0	1 000	590	
	42	7	0.3	(6806	0	O	0	1 000	190	(4)
00	47	9	0.3	(6906	Ö	Ö	Ŏ	1 000	300	(A)
30	55	13	1	*	6006	Ô	0	0	1 000	560	
	62	16	1	* (6206	Ö	Ŏ	Ŏ	1 000	820	(B)
	62	14	1	* (6007	Ŏ	Ŏ	Ŏ	1 000	680	1 ` ′
35	72	17	1.1	(6207	Ō	Ō	Ō	930	1 090	
40	68	15	1	(6008	Ō	Ō	Ō	920	710	(A)
40	80	18	1.1		6208	Ō			830	1 240	1

⁽²⁾ An asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring. However, stocked as standard inventory items use standard stainless steel.

⁽³⁾ Limiting load values are for reference only; they are not guaranteed.

⁽⁴⁾ Orders for standard inventory may be delayed, particularly if shipped from Japan.

Remarks 1. The radial internal clearance for bearings with bore diameters smaller than 10 mm is MC3. The radial internal clearance for bearings with bore diameters of 10 mm or larger is CN. See the radial internal clearance tables on Page A10 for further details.

^{2.} Shielded bearings are standard.

of SPACEA™ Series Bearings

12. DFO Bearings

Available on a production-

Page A49-A50

Shielded (example)

Inquiry designation⁽¹⁾

Type of inquiry designation	E-DFO Bearing	V-DFO Bearing		
(A)	0000 LZZ-HFD4 GVS	0000-LZZ-HFD GVS		
(B)	U- 0000 -H-20S8FD4ZZ GVS	U- 0000 -H-20S8FDZZ GVS		

	(B)		U- UU	UU -H-20	US8FD4	ZZ GV	S U- III	ШU -H-2 (JS8FDZ	Z GVS	
Е	Boundary of	dimension	IS		E-	DFO Bearin	ngs	V-	DFO Bearin	ıgs	
Bore diameter	Outside diameter D	Width B	Chamfer dimension (min.)	Basic designation ⁽²⁾	Availability	value)	value)	Availability	value)	Limiting load ⁽⁴⁾ (reference value)	Type of inquiry designation
(mm)	(mm)	(mm)	(mm)			(min-1)	(N)		(min-1)	(N)	
	9	4	0.1	684 694		1 000	27 40		1 000	10 16	-
4	12	4	0.15	604		1 000	40		1 000	16	
	13	5	0.2	624	l ŏ	1 000	55	Ŏ	1 000	22	
	11	5	0.15	685	Ŏ	1 000	30	Ŏ	1 000	12	1
5	13	4	0.2	695	0	1 000	45	0	1 000	18	
3	14	5	0.2	605	\downarrow	1 000	56	O O	1 000	22	
	16	5	0.3	625		1 000	73		1 000	29	(A)
	13 15	5 5	0.15	686 696	$\vdash \hspace{0.1cm} \hspace{0.1cm}$	1 000	46 56		1 000	18 22	
6	17	6	0.2	606		1 000	96	$\overline{}$	1 000	38	
	19	6	0.3	626	Ŏ	1 000	99	Ŏ	1 000	39	
	14	5	0.15	687	Ō	1 000	50	O	1 000	20	
7	17	5	0.3	697	Q	1 000	68	Q	1 000	27	
•	19	6	0.3	607		1 000	99	Q	1 000	39	(D)
	22 16	7 5	0.3	* 627 688		1 000	140 53		1 000	56 21	(B)
	19	6	0.2	698		1 000	95		1 000	38	(A)
8	22	7	0.3	* 608	$\overline{}$	1 000	140	Ŏ	1 000	56	
	24	8	0.3	* 628	Ŏ	1 000	140	Ŏ	1 000	57	(B)
	17	5	0.2	* 689		1 000	56	0	1 000	22	
9	20	6	0.3	699	<u> </u>	1 000	100	O	1 000	42	(A)
•	24	7	0.3	* 609		1 000	140	\bigcirc	1 000	57	
9.525	26 22.225	8 7.142	0.6	* 629 * R6		1 000	190 140		1 000	78 56	-
9.020	19	5	0.4	* 6800		1 000	73		1 000	29	1
40	22	6	0.3	* 6900	Ŏ	1 000	110	Ŏ	1 000	45	-
10	26	8	0.3	* 6000	Ŏ	1 000	190	Ŏ	1 000	78	
	30	9	0.6	* 6200	0	1 000	210	0	1 000	87	
	21	5	0.3	* 6801		1 000	82	0	1 000	32	
12	24	8	0.3	* 6901		1 000	120		1 000	49	-
	32	10	0.3	* 6001 * 6201	$\vdash \hspace{0.1cm} \hspace{0.1cm}$	1 000	210 290		1 000	87 110	
	24	5	0.3	* 6802		1 000	88	$\overline{}$	1 000	35	1
4.5	28	7	0.3	* 6902	Ŏ	930	180	Ŏ	930	74	
15	32	9	0.3	* 6002	Ō	850	230	Ō	850	95	(B)
-	35	11	0.6	* 6202	Q	800	320	Q	800	130	
	26	5	0.3	* 6803		930	110	Q	930	44	-
17	30 35	7	0.3	* 6903 * 6003		850 760	190 250		850 760	78 100	-
	40	12	0.6	* 6203	-	700	400		700	160	-
	32	7	0.3	* 6804		760	170	Ŏ	760	68	1
20	37	9	0.3	* 6904		700	270	Ŏ	700	100]
20	42	12	0.6	* 6004		640	390	Q	640	150	
	47	14	1	* 6204		590	540	Ŏ	590	210	
	37 42	7 9	0.3	* 6805		640 590	190		640	76	-
25	47	12	0.3	* 6905 * 6005		550	290 420		590 550	110 170	
	52	15	1	* 6205		510	590		510	230	1
	42	7	0.3	6806		550	190	Ŏ	550	77	(A)
30	47	9	0.3	6906		510	300	Ő	510	120	(A)
50	55	13	1	* 6006		470	560	Q	470	220	
	62	16	1	* 6206		430	820	$\stackrel{\sim}{\triangleright}$	430	330	(B)
35	62	14 17	1	* 6007 6207	$+\otimes$	410	680	$+\otimes$	410	270	
	72 68	15	1.1	6008		370 370	1 090 710		370 370	430 280	(A)
40	80	18	1.1	6208		330	1 240	Ŏ	330	490	(,,)
NA 1 0	A		1 12								

Notes (1) The actual designation may differ from the inquiry designation. [[[[]]] indicates the basic designation.

(2) An asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.

(3) Limiting load values are for reference only; they are not guaranteed.

Remarks 1. The radial internal clearance for bearings with bore diameters smaller than 10 mm is MC3. The radial internal clearance for bearings with bore diameters of 10 mm or larger is CN. See the radial internal clearance tables on Page A10 for further details.

2. Shieled bearings are standard.

13. KPM Grease-Packed Bearings

Available on a production-

Page A51-A52

Inquiry designation⁽¹⁾

Type of inquiry designation	KPM Grease-Packed Bearing
(A)	0000 LZZ-H KPM
(B)	0000 -H-20ZZU76A KPM

	Boundary of	dimensions						
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.)	Basic designation ⁽²⁾	Availability(3)	Limiting speed (reference value) (min-1)	Limiting load ⁽⁴⁾ (reference value) (N)	Type of inquiry designation
()	9	4	0.1	684		1 000	27	
	11	4	0.15	694		1 000	40	
4	12	4	0.2	604	Ŏ	1 000	40	
	13	5	0.2	624	Ŏ	1 000	55]
	11	5	0.15	685	Q	1 000	30	
5	13	4	0.2	695	O O	1 000	45	-
-	14 16	5 5	0.2	605 625		1 000	56 73	(A)
	13	5	0.15	686		1 000	46	(^)
	15	5	0.2	696	$\overline{}$	1 000	56	
6	17	6	0.3	606	Ŏ	1 000	96]
	19	6	0.3	626	0	1 000	99]
	14	5	0.15	687	Q	1 000	50	_
7	17	5	0.3	697	Q	1 000	68	-
-	19 22	6 7	0.3	* 627		1 000	99 140	(B)
-	16	5	0.3	688		1 000	53	<u> </u>
	19	6	0.3	698	Ŏ	1 000	95	(A)
8	22	7	0.3	* 608	Ŏ	1 000	140	
	24	8	0.3	* 628	0	1 000	140	(B)
	17	5	0.2	* 689	Q	1 000	56	
9	20	6	0.3	699	Q	1 000	100	(A)
-	24 26	7 8	0.3	* 609 * 629	\bigcirc	1 000 1 000	140 190	1
9.525	22.225	7.142	0.0	* R6	\vdash	1 000	140	-
0.020	19	5	0.3	* 6800	$\overline{}$	1 000	73	1
10	22	6	0.3	* 6900	(C3)	1 000	110	1
10	26	8	0.3	* 6000	○(C3)	1 000	190	
	30	9	0.6	* 6200	(C3)	1 000	210	
	21	5	0.3	* 6801	O(C3)	1 000	82	-
12	24 28	6 8	0.3	* 6901 * 6001	(C3) (C3)	1 000 1 000	120 210	
-	32	10	0.6	* 6201	(C3)	1 000	290	-
	24	5	0.3	* 6802	(C3)	1 000	88	1
45	28	7	0.3	* 6902	(C3)	1 000	180	
15	32	9	0.3	* 6002	(C3)	1 000	230	(B)
	35	11	0.6	* 6202	(C3)	1 000	320	
-	26	5	0.3	* 6803	O(C3)	1 000	110	_
17	30 35	7 10	0.3	* 6903 * 6003	(C3) (C3)	1 000 1 000	190 250	1
-	40	12	0.6	* 6203	(C3)	1 000	400	-
	32	7	0.3	* 6804	(C3)	1 000	170	1
00	37	9	0.3	* 6904	(C3)	1 000	270	1
20	42	12	0.6	* 6004	○(C3)	1 000	390	
	47	14	1	* 6204	(C3)	1 000	540	
-	37	7	0.3	* 6805	(C3)	1 000	190	-
25	42 47	9 12	0.3	* 6905 * 6005	(C3)	1 000	290 420	-
-	52	15	0.6	* 6005 * 6205	(C3) (C3)	1 000	590	1
	42	7	0.3	6806	(00)	1 000	190	(4)
20	47	9	0.3	6906	ŏ	1 000	300	(A)
	55	13	1	* 6006	O(C3)	1 000	560	
30	00	16	1	* 6206	(C3)	1 000	820	(B)
30	62							1 ' '
35	62	14	1	* 6007	(C3)	1 000	680	
								(A)

Notes (1) The actual designation may differ from the inquiry designation. [100] indicates the basic designation.

(2) An asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.

(3) Bearings that may have a radial internal clearance of C3 are indicated by (C3) next to the availability mark.

(4) Limiting load values are for reference only; they are not guaranteed.

Remarks 1. The radial internal clearance for bearings with bore diameters smaller than 10 mm is MC3. The radial internal clearance for bearings with bore diameters of 10 mm or larger is CN. See the radial internal clearance tables on Page A10 for further details.

2. Sheleded bearings are standard.

14. YS Bearing with Spacer Joints

Available on a production-

Page A53-A54

Inquiry designation⁽¹⁾

Type of inquiry designation	YS Bearing with Spacer Joints
(A)	0000 LZZC4-HMSS2 GVS
(B)	U- 000 -H-20S4MYSV01ZZC4** GVS

	Boundary of	dimensions					Limiting	Limiting			
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)		Basic gnation [©]	Availability	speed (reference value) (min ⁻¹)	load ⁽³⁾ (reference value) (N)	Type of inquiry designation		
6	17	6	0.3		606	\bigcirc	1 000	38	(A)		
7	19	6	0.3		607	\bigcirc	1 000	39	(A)		
8	22	7	0.3	*	608	\circ	1 000	56	(B)		
8	24	8	0.3	*	628	\circ	1 000	57	(b)		
	20	6	0.3		699	\circ	1 000	42	(A)		
9	24	7	0.3	*	609	\circ	1 000	57			
	26	8	0.6	*	629	\circ	1 000	78			
	19	5	0.3	*	6800	\circ	1 000	29			
10	22	6	0.3	*	6900	0	1 000	45			
10	26	8	0.3	*	6000	0	1 000	78			
	30	9	0.6	*	6200	0	1 000	87			
	24	6	0.3	*	6901	0	1 000	49			
12	28	8	0.3	*	6001	\circ	1 000	87			
	32	10	0.6	*	6201	\circ	900	110			
15	24	5	0.3	*	6802	0	1 000	35			
	28	7	0.3	*	6902	\circ	930	74			
	32	9	0.3	*	6002	\circ	850	95	(B)		
	35	11	0.6	*	6202	\circ	800	130			
17	30	7	0.3	*	6903	\bigcirc	850	78			
17	35	10	0.3	*	6003	\circ	760	100			
	32	7	0.3	*	6804	0	760	68			
20	37	9	0.3	*	6904	0	700	100			
20	42	12	0.6	*	6004	\circ	640	150			
	47	14	1	*	6204	\circ	590	210			
	37	7	0.3	*	6805	\circ	640	76			
25	42	9	0.3	*	6905	\circ	590	110			
23	47	12	0.6	*	6005	0	550	170			
	52	15	1	*	6205	\circ	510	230			
	47	9	0.3		6906	\circ	510	120	(A)		
30	55	13	1	*	6006	0	470	220			
	62	16	1	*	6206	0	430	330]		
35	62	14	1	*	6007	0	410	270			
00	72	17	1.1	*	6207	0	370	430	(B)		
40	68	15	1	*	6008	0	370	280			
	80	18	1.1	*	6208	0	330	490]		
45	75	16	1	*	6009		330	350			

Mark: Available on a production-by-order basis.

Notes (1) The actual designation may differ from the inquiry designation. [1000] indicates the basic designation.

(2) An asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring bearing steel material. (3) Limiting load values are for reference only; they are not guaranteed.

Remarks 1. The radial internal clearances for the bearings on this Page are listed below. See the radial internal clearance tables on Page A10 for further details.

Bore diameters smaller than 10 mm: 0.014 mm to 0.029 mm.

Bore diameters of 10 mm or larger: C4

2. Shieled bearings are stnadard.

of SPACEA™ Series Bearings

15. SJ Bearings

Inquiry designation⁽¹⁾

U- 000 -H-20S4MBSJ06ZZ GVS

Available on a productionby-order basis

Page A55-A56

Shielded (example)

1	Boundary dimensions		

Boundary dimensions							Limiting	Radial	ı
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basic designation ⁽²⁾	Availability	Limiting speed (reference value) (min ⁻¹)	load ⁽³⁾ (reference value) (N)	internal clearance (min)	,
8	22	7	0.3	* 608		1 000	56	0.037-0.080	ľ
10	26	8	0.3	* 6000		1 000	78	0.037-0.080	ı
10	30	9	0.6	* 6200		1 000	87	0.037-0.060	,,
10	28	8	0.3	* 6001		1 000	87	0.045-0.090	l
12	32	10	0.6	* 6201		900	110	0.045-0.090	l
15	32	9	0.3	* 6002		850	95	0.045-0.090	ı
15	35	11	0.6	* 6202	0	800	130	0.045-0.090	,
17	35	10	0.3	* 6003	0	760	100	0.045.0.000	١
17	40	12	0.6	* 6203	0	700	160	0.045–0.090	
00	42	12	0.6	* 6004		640	150	0.040, 0.000	
20	47	14	1	* 6204	0	590	210	0.048–0.096	
25	52	15	1	* 6205		510	230	0.053-0.106	
30	55	13	1	* 6006		470	220	0.053_0.106	

Mark: Available on a production-by-order basis.

Notes (1) The actual designation may differ from the inquiry designation. [][][] indicates the basic designation.

(2) An asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.

(3) Limiting load values are for reference only; they are not guaranteed.

Remarks: Shielded bearings are standard.

of SPACEA™ Series Bearings

16. Food Grade Grease-Packed Bearings

Available on a production

Page A57-A58

Inquiry designation⁽¹⁾

Type of inquiry designation	RLS Grease	BL2 Grease for High Temperature
(A)	0000 LZZ-H RLS	0000 LZZ-H BL2
(B)	0000 -H-20ZZU23 RLS	0000-H-20ZZU23 BL2

◆ See the Molded-Oil™ Bearings with food grade lubricant on Page A16.

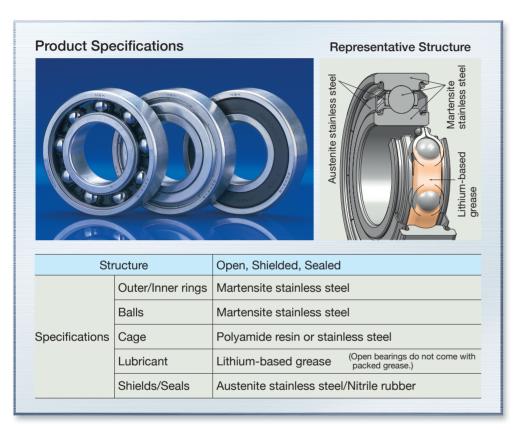
	Boundary dimensions					NSF	H1			
Bore diameter	Outside diameter	Width	Chamfer dimension	Basic		grease		grease mperature	Limiting load ⁽⁴⁾ (reference value)	Type of inquiry
d (mm)	D (mm)	B (mm)	(min.) <i>r</i> (mm)	designation ⁶	Availability	Limiting speed ⁽³⁾ (reference value) (min ⁻¹)	Availability	Limiting speed ⁽³⁾ (reference value) (min ⁻¹)	(N)	designation
	9	4	0.1	684		37,100	0	31,800	27	
4	11	4	0.15	694		33,600		28,800	40	
4	12	4	0.2	604		33,600		28,800	40	
	13	5	0.2	624		28,000		24,000	55	
	11	5	0.15	685		31,500	0	27,000	30	
-	13	4	0.2	695		30,100	0	25,800	45	
5	14	5	0.2	605		28,000	0	24,000	56	
	16	5	0.3	625		25,200	0	21,600	73	(A)
	13	5	0.15	686		28,000	0	24,000	46	
6	15	5	0.2	696	0	28,000	0	24,000	56	
	17	6	0.3	606		26,600	0	22,800	96	
	19	6	0.3	626		22,400	0	19,200	99	
7	14	5	0.15	687		28,000	0	24,000	50	
	17	5	0.3	697		25,200	0	21,600	68	
	19	6	0.3	607		25,200	0	21,600	99	
	22	7	0.3	* 627		21,000	0	18,000	140	(B)
	16	5	0.2	688		25,200	0	21,600	53	(4)
0	19	6	0.3	698		25,200	0	21,600	95	(A)
8	22	7	0.3	* 608		23,800	0	20,400	140	
	24	8	0.3	* 628		19,600	0	16,800	140	(B)
	17	5	0.2	* 689		25,200	0	21,600	56	
0	20	6	0.3	699		23,800	0	20,400	100	(A)
9	24	7	0.3	* 609		22,400	0	19,200	140	
	26	8	0.9	* 629		19,600		16,800	190	
9.525	22.225	7.142	0.4	* R6		22,400	0	19,200	140	
	19	5	0.3	* 6800		23,800	0	20,400	73	
10	22	6	0.3	* 6900		22,400	0	19,200	110	
10	26	8	0.3	* 6000		21,000	0	18,000	190	
	30	9	0.6	* 6200	0	16,800	0	14,400	21	1
	21	5	0.3	* 6801		22,400		19,200	82	(B)
10	24	6	0.3	* 6901		21,000	0	18,000	120	
12	28	8	0.3	* 6001		19,600	0	16,800	210	†
	32	10	0.6	* 6201		14,000	0	12,000	290	
	24	5	0.3	* 6802		19,600	0	16,800	88	
15	28	7	0.3	* 6902	0	18,200	0	15,600	180	
	32	9	0.3	* 6002		16,800	Ö	14,400	230	
	35	11	0.6	* 6202		14,000	0	12,000	320	

		<i>■ B</i> ,		
	r			_
øD				d
Ĩ				Į.

Shielded (example)

	Boundary dimensions					NSF	H1			
Bore diameter	Outside diameter	Width	Chamfer dimension	Basic	RLS (grease		grease mperature	Limiting load ⁽⁴⁾ (reference	Type of inquiry
d (mm)	D (mm)	B (mm)	(min.) <i>r</i> (mm)	designation ⁽²⁾	Availability	Limiting speed ⁽³⁾ (reference value) (min ⁻¹)	Availability	Limiting speed ⁽³⁾ (reference value) (min ⁻¹)	value) (N)	designation
	26	5	0.3	* 6803		18,200		15,600	110	
17	30	7	0.3	* 6903	0	16,800	0	14,400	190	
17	35	10	0.3	* 6003	0	15,400	\bigcirc	13,200	250	
	40	12	0.6	* 6203	0	11,900	0	10,200	400	
20	32	7	0.3	* 6804	0	15,400	0	13,200	170	
	37	9	0.3	* 6904	0	13,300	0	11,400	270	
20	42	12	0.6	* 6004		12,600		10,800	390	
	47	14	1	* 6204		10,500		9,000	540	(B)
	37	7	0.3	* 6805		12,600		10,800	190	
25	42	9	0.3	* 6905		11,200		9,600	290	
25	47	12	0.6	* 6005		10,500		9,000	420	
	52	15	1	* 6205		9,100		7,800	590	
30	55	13	1	* 6006		9,100		7,800	560	
30	62	16	1	* 6206		7,700		6,600	820	
35	62	14	1	* 6007	Ó	7,700	Ó	6,600	680	
35	72	17	1.1	6207	Ó	6,650	Ó	5,700	1090	
40	68	15	1	6008	0	7,000	0	6,000	710	(A)
40	80	18	1.1	6208	0	5,250	0	4,500	1240	

Mark: O Available on a production-by-order basis.

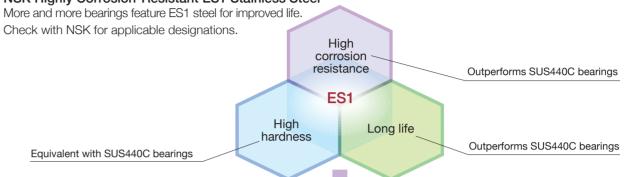

- Notes (1) The actual designation may differ from the inquiry designation. [][][] indicates the basic designation.
 - (2) An asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.
 - (3) The limiting speeds listed are for shielded bearings. Please contact NSK for the limiting speeds of bearings with rubber contact seals.
 - (4) Limiting load values are for reference only; they are not guaranteed.
- Remarks 1. The radial internal clearance for the bearings with bore diameters smaller than 10 mm is MC3. The radial internal clearance for bearings with bore diameters of 10 mm or larger is CN. See the radial internal clearance tables on Page A10 for further details.
 - 2. Shielded bearings are standard.

1. Stainless Steel Bearings Pages A11-A14 Dimensions, accuracy and availability of bearings.

Corrosive Environments

Stainless steel bearings, the standard products of the NSK SPACEA™ Series for special environments, are suitable for high-humidity environments.

Applications: Equipment used in high-humidity environments: food processing, cleaning, chemical processing, fishery equipment


Operating Instructions and Notes

- For use in normal atmospheric conditions only.
- Bearings stocked as standard inventory items are prepacked with NS7 (lithium-based) grease.
- Keep bearings packed until immediately before mounting.
- See the tables on Pages A11 through A14 for limiting loads and limiting rotational speeds.
- Bearings may not be usable in certain corrosive environments or conditions.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

Features

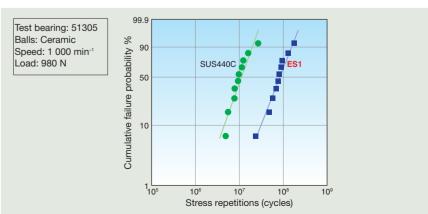
- For use at normal atmospheric pressure, with grease lubrication
- Higher corrosion resistance than bearing steel
- Open, shielded, and contact sealed bearings are available (see A11-A14)

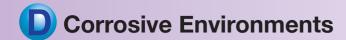
NSK Highly Corrosion-Resistant ES1 Stainless Steel

Performance

Material	Hardness, HRC	Corrosion resistance(1)	Features
NSK highly corrosion-resistant ES1 stainless steel	58-62	0	NSK-developed steel
Martensite stainless steel SUS440C	58-62	Δ	Ordinary stainless steel
Bearing steel SUJ2	60–64	×	Ordinary steel for bearings

Note (1) Comparative assessment between three kinds of materials


Corrosion resistance of ES1


Outperforms SUS440C in corrosion resistance

Immersion rolling fatigue life Outperforms SUS440C in durability

2. Stainless Steel Angular Contact Ball Bearings

For use in atmospheric pressure and cleanroom environments

Page A15

Features

- Outperforms standard bearing steel in terms of corrosion resistance.
- Achieves high running accuracy to ISO tolerance class P5.
- Supports universal matching with light preload when mounted in a face-to-face (DF) arrangement or back-to-back (DB)
- Stainless steel angular contact ball bearings come in two variations: one set is suitable for cleanroom and normal atmospheric pressure conditions while the other is suited for cleanroom, vacuum, and high-temperature environments.

Specifications of Bearings

А	Application environment		Atmospheric pressure and cleanroom environments	Vacuum, cleanroom and high-temperature environments	
	Contact angle		30° (A) or 25° (A5)		
Mate		Outer/Inner rings, Balls	Marten:	site stainless steel	
Male	eriai [Cage	Polyamide resin (TYN)	Natural PEEK resin (T4N) or Stainless steel	
	А	Arrangement	Universal arrangement (single row)		
	Preload		Light preload		
		Accuracy		P5	

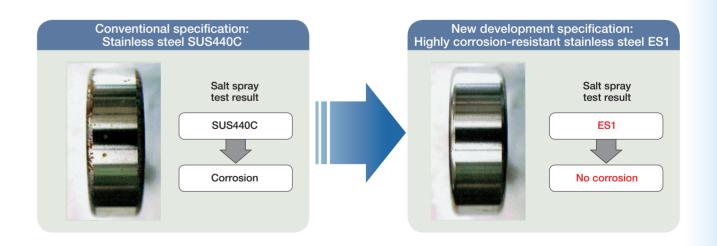
Operating Instructions and Notes

- Keep bearings packed until immediately before mounting.
- For cleanroom and normal environment bearings, first clean the bearings to remove the anti-corrosion agent before applying a
- Vacuum, cleanroom, and high-temperature environment bearings have already been degreased and cleaned. Please apply a
- See the tables on Page A15 for limiting loads and limiting rotational speeds.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

3. Stainless Steel Self-Aligning Ball Bearings

Featuring highly corrosion-resistant ES1 stainless steel

Page A15



Applications: Flat panel display cleaning equipment, film cleaning systems, etching equipment, conveyance equipment

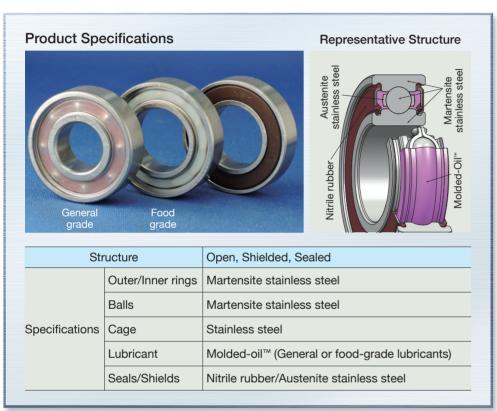
Features

- Highly resistant to corrosion thanks to ES1: a highly corrosion-resistant stainless steel.
- Self-aligning with the ability to accommodate misalignment of the axis and housing from 4 to 7 degrees.

Operating Instructions and Notes

- Keep bearings packed until immediately before mounting.
- Clean the bearings to remove the anti-corrosion agent before applying a suitable grease.
- See the tables on Page A15 for limiting loads and limiting rotational speeds.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

4. Molded-Oil™ Bearings

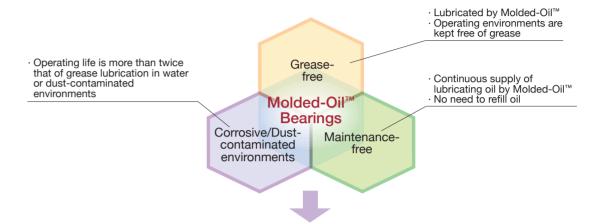

Page A16

Molded-Oil™ bearings, made of stainless steel, are lubricated with an original oil-containing material, Molded-Oil™, and are suitable for corrosive and contaminated environments at atmospheric pressure.

Corrosive, Sanitary and Dust-Contaminated Environments

Food grade lubricants are also available.

Applications: Semiconductor cleaning equipment, FPD cleaning equipment, hard-disk cleaning equipment, food processing machinery, various conveyor lines


Operating Instructions and Notes

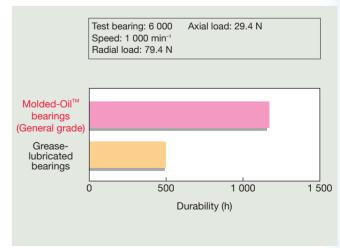
- For use in normal atmospheric conditions only.
- Because the solid lubricant used in these bearings will melt at a temperature of 120 °C, take care not to exceed temperatures of 100 °C when heating this bearing during the shrink-fit process for mounting.
- A radial load is required for the bearings to properly rotate. The minimum radial load to maintain proper rotation is at least 1 % of the basic dynamic load rating.
- Keep bearings packed until immediately before mounting.
- \bullet The scope of application (applied load, limiting $d_m n$ value) is listed in the table to
- Avoid exposure to organic solvents with a degreasing effect.
- Bearings may not be usable in certain corrosive environments or conditions.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

A	Applied load		steel bearing	dynamic lo	the stainless ad rating C_H be applied.>
	_imiting speed, a	rotational	150 000 Refer to the chart below for temperatures above 35 °C		
No	ote (1) d	n = (Bearing)	bore diameter + b	nearing outer o	diameter (mm))
	(-/ -		otational speed (m		, a. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Z _m Z	200 000				
A DOOR					activities (min)
notial speed and	200 000				
g rotational speed $a_m n$	200 000				and the second
Imiting rotational speed $a_m n$	200 000 150 000 100 000	÷2×Ří			60

Features

- Molded-Oil™ provides continuous supply of lubrication oil
- No grease or oil refilling keeps operating environments clean
- Operating life more than twice that of grease lubrication in water or dust-contaminated environments
- Contact-seal bearings available in standard inventory (see Page A16)
- NSF H1 food-grade lubricants for food processing machinery also available.

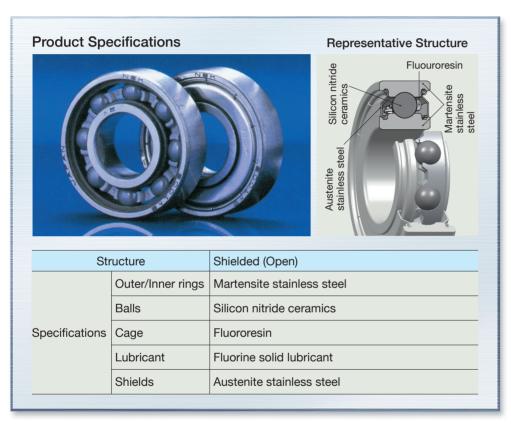



Performance

Portion containing high proportion of polyolefin Polyolefin is used for packaging food in supermarkets, replacing dioxin-generating vinyl chloride. Portion containing high proportion of lubricating oil Molded-Oil comes in both general-grade (mineral-oil based) and NSF H1* food grade variants. *NSF Category Code H1: Incidental food contact 100 µm Close-up of Molded-Oil

Durability under wet and water-immersed conditions

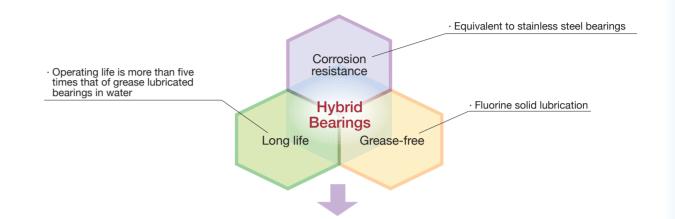
Molded-Oil™ bearings have an operating life twice that of grease-lubricated bearings.


5. Hybrid Bearings

Corrosive Environments

Page A17

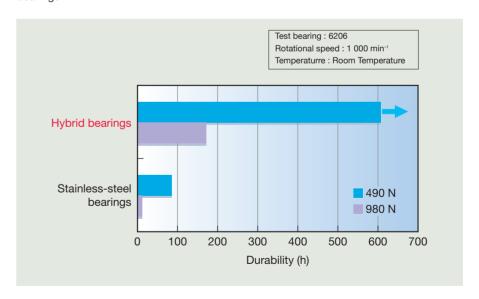
Hybrid bearings, combining ceramic balls and a fluororesin self-lubricating cage, are suitable for corrosive environments at atmospheric pressure.


Applications: Devices and conveyor lines used in water-spray or other wet environments such as food processing and fishery equipment

Operating Instructions and Notes

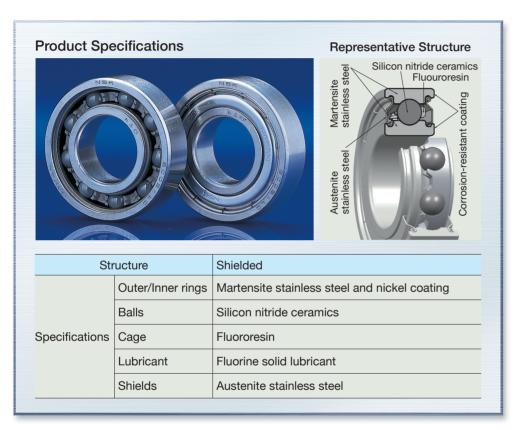
- Keep bearings packed until immediately before mounting.
- See the tables on Page A17 for limiting loads and limiting rotational speeds.
- A special clearance is adopted for the radial internal clearance. See the tables on Page A17.
- Bearings may not be usable in certain corrosive environments or conditions.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

Features


- Grease-free, fluorine-based solid lubricant
- Operating life more than five times that of stainless steel bearings in water-immersed environments

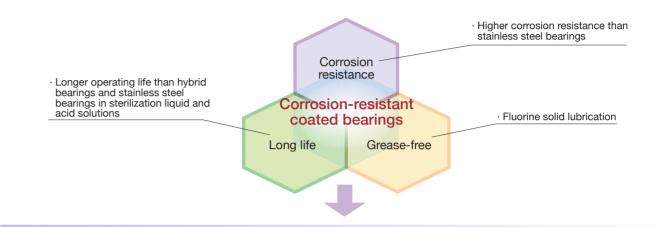
Performance

Durability in water-immersed environments


Hybrid bearings have an operating life more than five times that of stainless steel

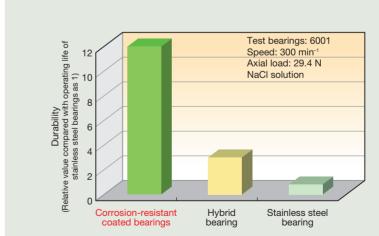
6. Corrosion-Resistant Coated Bearings

Corrosion-resistant coated bearings are coated with a nickel coating on the outer and inner rings to enhance corrosion resistance and durability, and are suitable for corrosive environments at atmospheric pressure.


Applications: Semiconductor/FPD/HD cleaning equipment, etching equipment, food processing machinery, various conveyor lines

Operating Instructions and Notes

- Keep bearings packed until immediately before mounting.
- See the tables on Page A17 for limiting loads and limiting rotational speeds.
- A special clearance is adopted for the radial internal clearance. See the tables of SPACEA™ bearing nomenclature on Page
- Dimensional tolerances of the bore and the outside diameter for corrosion-resistant coated bearings may deviate from the JIS Class 0 standard for coating thickness by a maximum of 5 µm in diameter.
- Bearings may not be usable in certain corrosive environments or conditions.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

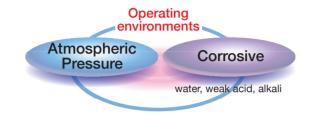

Features

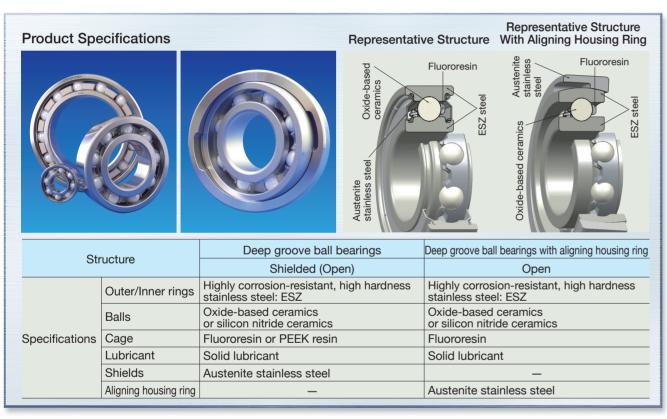
- Grease-free, fluorine-based solid lubricant
- Higher corrosion-resistance and longer life than stainless steel bearings or hybrid bearings
- Resistant to sterilization liquids such as hydrogen peroxide and oxonia

Performance

Durability in NaCl solution

In a NaCl solution, corrosion-resistant coated bearings have an operating life more than four times that of hybrid bearings, and more than 12 times that of stainless steel bearings.

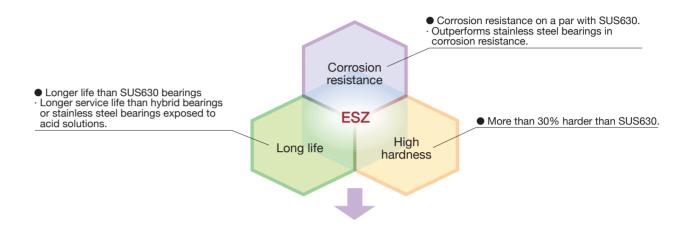



7. ESZ Bearings

Page A18

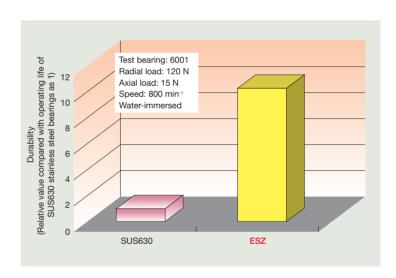
ESZ bearings are highly corrosion-resistant, high-hardness stainless steel bearings offering corrosion resistance on a par with SUS630 and over 30% more hardness than SUS630.

The bearings are suitable for corrosive environments at atmospheric pressure.

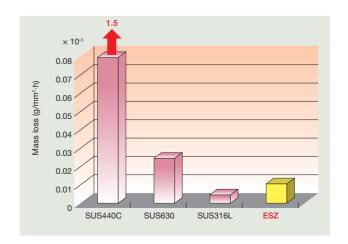

Applications: High function film conveyor, cleaning equipment, food processing machinery, various conveyor lines

Operating Instructions and Notes

- Keep bearings packed until immediately before mounting.
- See the tables on Page A18 for limiting loads and limiting rotational speeds.
- C3 is the standard radial internal clearance.
- When bearings with aligning housing rings are used under radial loads, ensure that the radial load position is not on the notches (in two spots).
- The fit between the aligning housing ring and housing should be loose with a sufficient amount of clearance to ensure smooth, self-aligning performance.
- Please contact NSK if a bearing with an aligning housing ring will be mounted to a vertical shaft.
- Bearings may not be usable in certain corrosive environments or conditions.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.


Features

- Product lineup includes standard deep groove ball bearings and deep groove ball bearings with an aligning housing ring.
- Corrosion resistance on par with SUS630. Able to withstand exposure to sodium hypochlorite solutions.
- Over 30% harder than SUS630.
- Able to accommodate bending associated with wider rollers and allows for misalignment of the shaft and housing.

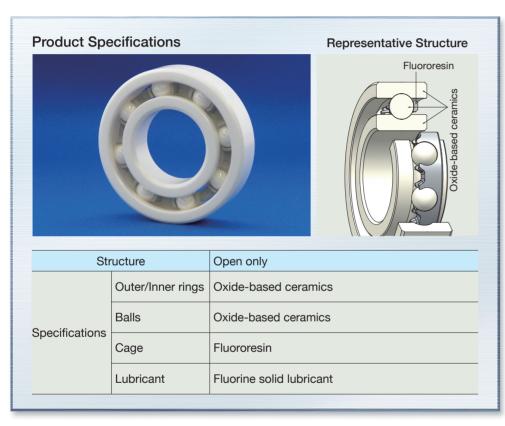

Performance

Durability in water-immersed conditions

Results of 5% sulfuric acid immersion test

A39 NSK

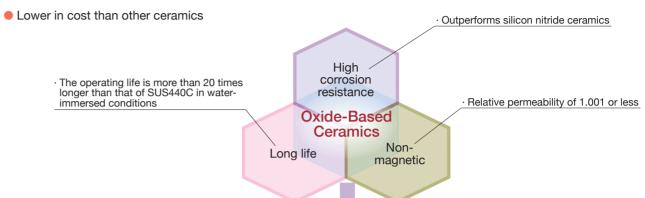
8. All-Ceramic Bearings


Page A19

Dimensions, accuracy and availability of bearings.

With ceramic outer/inner rings and balls, all-ceramic bearings have self-lubricating fluororesin cages and are suitable for corrosive environments and non-magnetic requirements at atmospheric pressure.

Corrosive Environments and Non-Magnetic Requirements


Applications: Corrosive environments: Semiconductor production machinery, chemical processing equipment, metal plating equipment Non-magnetic requirements: Electron beam drawing devices, electron beam exposure equipment, inspection equipment

Operating Instructions and Notes

- Keep bearings packed until immediately before mounting.
- See the tables on Page A19 for limiting loads and limiting rotational speeds.
- Due to the fragility of ceramic materials, please observe the following precautions:
- **★**Do not drop or strike the bearing.
- ★Allow for sufficient clearance when installing the bearing.
- ★Do not strike the bearing with a hammer or other tool when installing the bearing to a shaft or axlebox.
- A special clearance is adopted for the radial internal clearance. See the tables of SPACEA™ bearing nomenclature on Page A19.
- Bearings may not be usable in certain corrosive environments or conditions.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

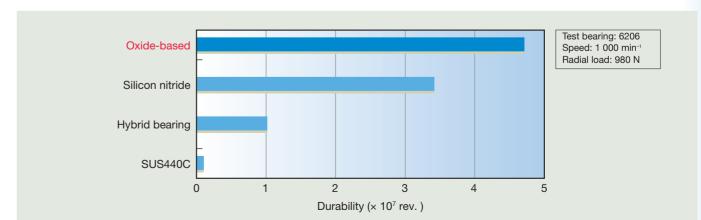
Features

- Grease-free, fluorine-based solid lubricant
- Higher corrosion resistance and longer life than conventional stainless steel bearings and hybrid bearings
- Completely non-magnetic

Performance

Comparison of performance and cost

Oxide-based ceramics are:

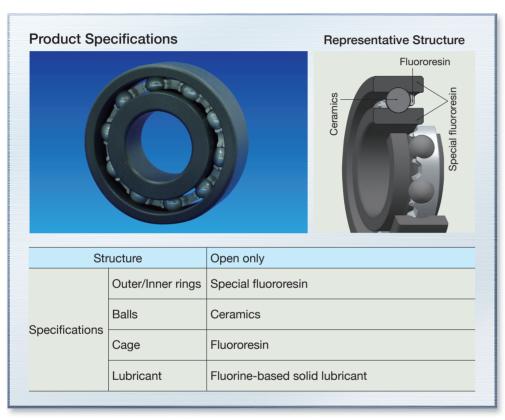

- ★More corrosion-resistant than stainless steel SUS440C or silicon nitride ceramics (Si₃N₄)
- ★Lower in price than other ceramics

	Evaluation item	Ceran	Stainless steel	
	Evaluation item	Oxide-based Silicon nitride		SUS440C
	3% Sulfuric acid (room temperature)	0	Δ	×
Corrosion resistance	8% Hydrochloric acid (room temperature)	0	Δ	×
	5% Fluoric acid (room temperature)	Δ	Δ	×
R	elative permeability	1.001 or less	1.001 or less	Ferromagnetic body

Corrosion resistance evaluation ···· O: Slightly corroded \triangle : Partially corroded \times : Corroded

Durability in water-immersed conditions

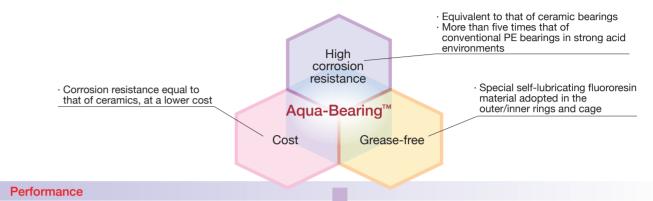
Oxide-based ceramics are 20 times more durable than SUS440C under water-immersed conditions.


9. Aqua-Bearing™

Page A20

Corrosive Environments (Strong Acids and Alkalis)

Aqua-Bearing[™] features a special fluororesin for outer/inner rings and cage equipped to meet a broad range of applications in water, alkali and strong acid environments. Aqua-Bearing™ is suitable for corrosive environments at normal pressures.

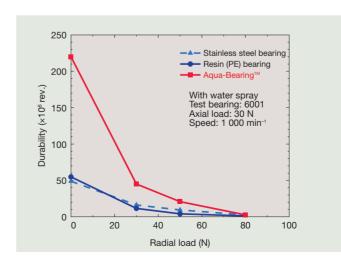

Applications: Semiconductor cleaning equipment, FPD cleaning equipment, hard-disk cleaning equipment, metal plating equipment, etching equipment, food processing machinery

Operating Instructions and Notes

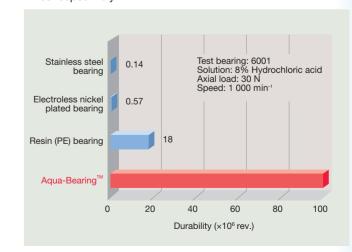
- For use in normal atmospheric conditions only.
- Keep bearings packed until immediately before mounting.
- See the tables on Page A20 for limiting loads and limiting rotational speeds.
- The Aqua-Bearing™ adopts special standards for dimensional accuracy of the inner ring bore diameter, outside diameter of the outer ring, and radial internal clearance. See the tables on Page A20.
- Note that the bearing fit is large due to the linear expansion coefficient of the special fluororesin material $(\alpha = 1.7 \times 10^{-4})^{\circ}$ C).
- These bearings may not be usable with certain liquid medicines or under certain concentrations.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

Features

- High corrosion resistance equivalent to that of ceramic bearings
- Excellent durability in acid solvents; over 1 000 times more resistant than SUS440C stainless bearings and over five times more resistant than conventional resin (PE) bearings
- Special self-lubricating fluororesin eliminates need for grease/oil refilling.

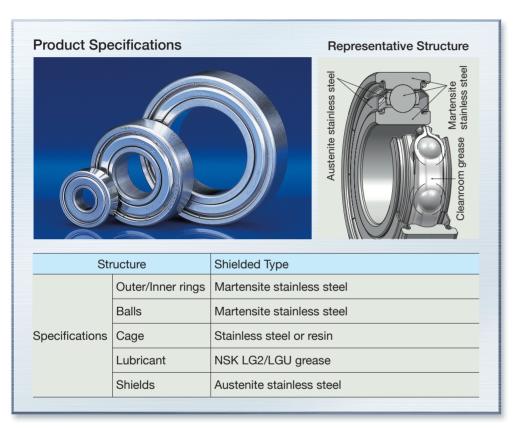

Comparison of corrosion resistance

Corrosion resistance equal to or higher than all-ceramic bearings (oxide-based)


	Aqua-Bearing™	PE	All-ceramic bearings (Oxide-based)
5% Sulfuric acid	Δ	×	Δ
8% Hydrochloric acid	Δ	×	Δ
Aqua regalis	0	X	0
15% Acetic acid	0	Δ	0
70% Aqua fortis	Δ	X	Δ
70% Phasphoric acid	0	Δ	0
40% Hydrogen peroxide solution	0	Δ	0

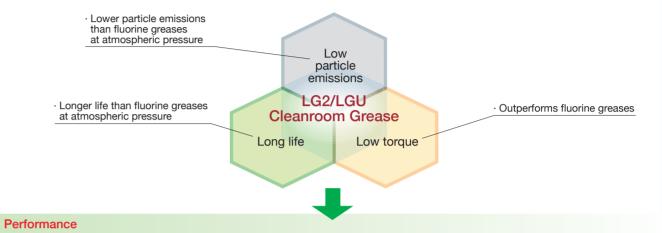
Corrosion resistance evaluation : Not corroded

 Results of water-spray durability tests Remarkable durability under light-load conditions.


 Results of durability tests in strong acid solution Durability is higher than that of SUS440C bearings and conventional resin bearings and more than 1 000 times and five times respectively

10. LG2/LGU Grease-Packed Bearings Pages A21-A22 Dimension and a page A21-

LG2/LGU Cleanroom grease-packed stainless steel bearings are suitable for cleanroom environments at atmospheric pressure.

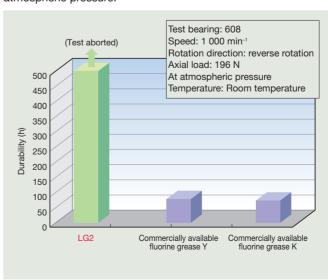

Applications: Equipment in cleanrooms

Operating Instructions and Notes

- LG2/LGU grease products are for use in normal atmospheric conditions only.
- Keep bearings packed until immediately before mounting.
- See the tables on Pages A21 and A22 for limiting loads and limiting rotational speeds.
- Cleanliness is indicated per ISO 14644-1 (values in parentheses refer to former US FED-STD-209E Classes). Cleanliness may vary depending on operating conditions, surrounding components, and other factors.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

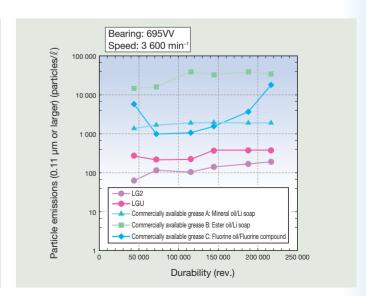
Features

- Cleanroom grease lubrication for use at atmospheric pressure only
- Lower particle emissions, lower torque, longer operating life, and higher corrosion resistance than commercially available fluorine greases
- LGU grease is free of metallic elements


Properties of grease

Operating environment	For use at atmospheric pressure only					
Product	LG2	LGU				
Base oil	Mineral oil and synthetic hydrocarbon oil	Synthetic hydrocarbon oil				
Thickener	Lithium soap	Diurea				
Kinematic viscosity (mm²/s, 40 °C)	32	96				
Consistency	199	201				
Maximum operating temperature (°C)	up to 70	up to 120				

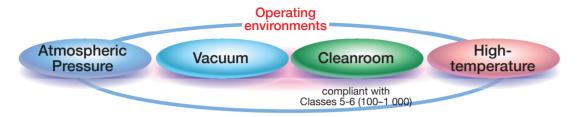
LGU grease is free of metallic elements

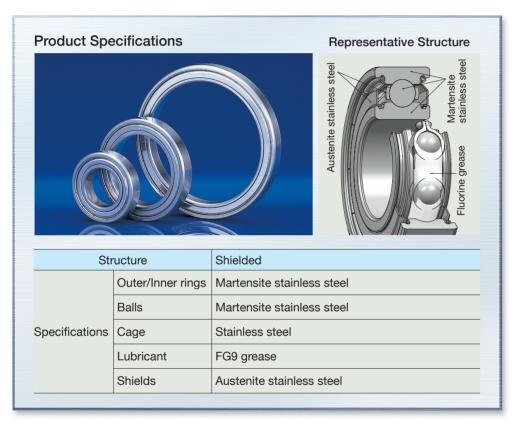

Results of durability tests

LG2/LGU grease feature longer life than other grease at atmospheric pressure.

Results of particle emission tests

LG2/LGU grease limit particle emissions at atmospheric pressure.




Cleanroom and Vacuum Environments

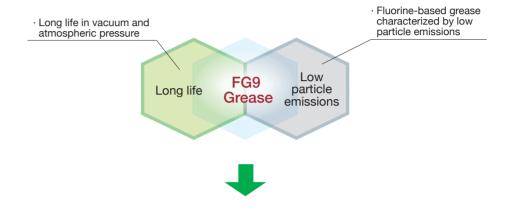
11. FG9 Fluorine Grease-Packed Bearings

Pages A21-A22 Dimensional and a

FG9 fluorine grease-packed stainless steel bearings are suitable for cleanroom environments at atmospheric pressure up to vacuum.

Applications: Semiconductor/ organic electro-luminescence/ FPD manufacturing equipment, hard disk manufacturing equipment

Operating Instructions and Notes

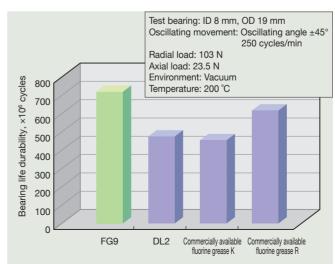

- Keep bearings packed until immediately before mounting.
- The scope of application (degree of vacuum, temperature) is listed in the table to the right.
- See the tables on Pages A21 and A22 for limiting loads and limiting rotational
- Ensure an optimum radial internal clearance for maximum rotational performance by applying a fit that considers bearing load, operating temperatures, materials of the shaft and/or housing (due to coefficient of linear expansion), etc.
- Cleanliness is indicated per ISO 14644-1 (values in parentheses refer to former US FED-STD-209E Classes). Cleanliness may vary depending on operating conditions, surrounding components, and other factors.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

Fluorine grease 100 Temperature (°C)

Features

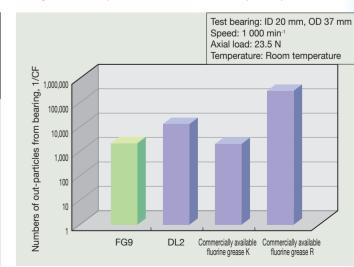
- Fluorine grease lubrication
- More suitable for vacuums and at higher temperatures than LG2/LGU greases
- Lower particle emissions and longer life than conventional fluorine greases
- Satisfies EU POPs regulations for restrictions on PFOA*

*Annex I to Regulation (EU) 2019/1021


Performance

Properties of grease

Operating environments	From atmospheric pressure to vacuum	
Name	FG9	
Base oil	Fluorine oil	
Thickener	PTFE	
Kinematic viscosity (mm²/s, 40 °C)	200	
Maximum operating temperature (°C)	up to 200	

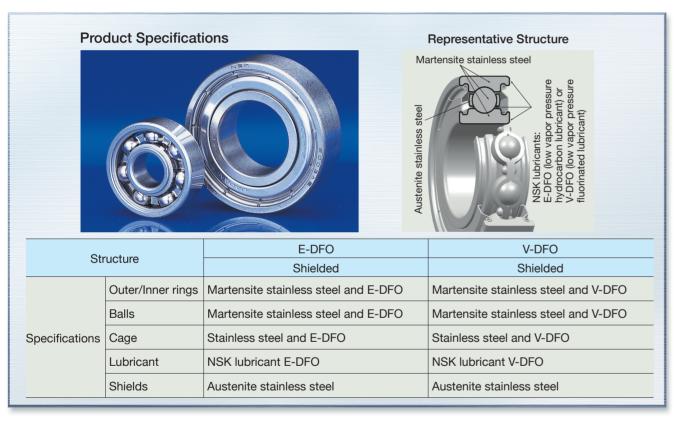

Results of durability tests in vacuum

FG9 provides the longest life in vacuum environments.

Results of particle emission tests at atmospheric pressure

FG9 grease limits particle emissions at atmospheric pressure.

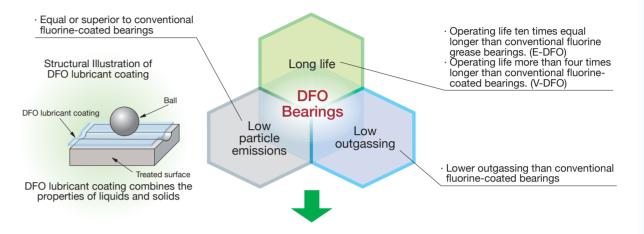
Cleanroom and Vacuum Environments


12. E-DFO Bearings, V-DFO Bearings

Page A23

New concept V-DFO and E-DFO bearings have special lubrication coatings applied to the rings, balls, and cage that deliver superior cleanliness and long life. The V-DFO specification uses low-vapor-pressure fluorinated lubricant while the E-DFO specification uses low-vapor-pressure hydrocarbon lubricant.

These bearings are suitable for cleanroom environments ranging from atmospheric pressure to vacuum conditions.


Applications: Manufacturing equipment for semiconductors, OLEDs, flat-panel displays, and hard disks; solar cell manufacturing; robots for vacuum environments

Operating Instructions and Notes

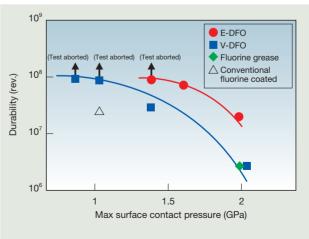
- Keep bearings packed until immediately before mounting.
- Avoid storing the bearing for a long amount of time.
- Wear clean gloves when handling.
- Mount the bearing without washing.
- Avoid exposure to any oil or moisture.
- See the tables on Page A23 for limiting loads and limiting rotational speeds.
- Cleanliness is indicated per ISO 14644-1 (values in parentheses refer to former US FED-STD-209E Classes). Cleanliness may vary depending on operating conditions, surrounding components, and other factors.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

Features

- Operating life more than four times longer than conventional fluorine-coated bearings
- Lower particle emissions and outgassing than MoS₂ solid lubricated bearings
- Usable in environments where lubricants containing metallic elements such as MoS₂ are not suitable
- Usable from atmospheric pressure to vacuums at 10⁻⁷ Pa (room temperature), although the degree of vacuum in which the bearings can be used varies according to operating temperature

Performance

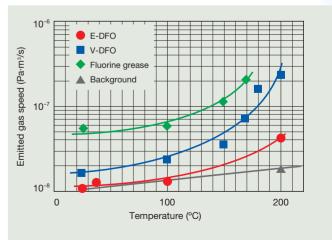
Comparison of operating environments for NSK lubricant E-DFO and V-DFO:


Conditions	E-DFO	V-DFO
Corrosive gas	×	0
Vacuum	(up to 150°C)	(up to 150°C)
Atmospheric pressure	(up to 50°C)	(up to 200°C)
Limiting load	(up to 5%)	(up to 2%)

Durability under vacuum conditions

1. E-DFO offers nearly ten times more durability than conventional fluorine grease.

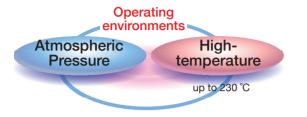
2. V-DFO offers upwards of four times the durability of a fluorine coated bearing

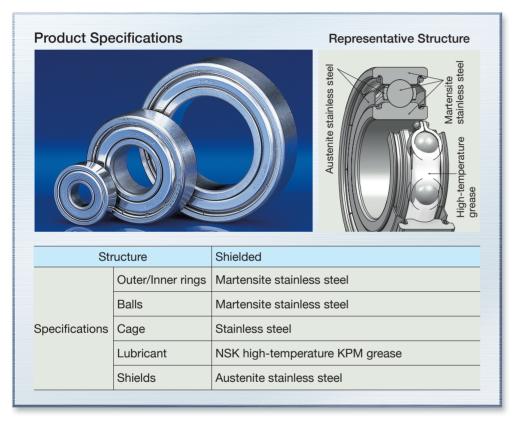

Test conditions Test bearing: 708 Speed: 3 000 min Degree of vacuum: 2 x 10⁻⁴ Pa

Outgassing under hightemperature conditions

Test bearing: 608 Degree of vacuum: 8 x 10⁻⁴ Pa Low outgassing characteristics

Test conditions

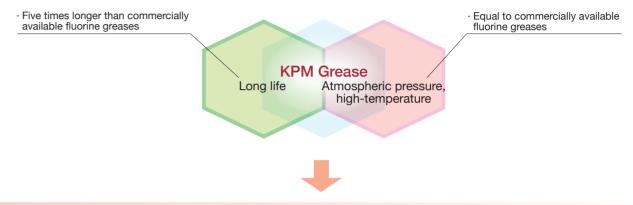




D) High-Temperature Environments (~230 °C)

13. KPM Grease-Packed Bearings

These high-temperature bearings are packed with NSK's long-life, high-temperature KPM grease for use at atmospheric pressure only.


Applications: Copying machines, kilns, high-temperature conveyance equipment, other equipment for high-temperature environments

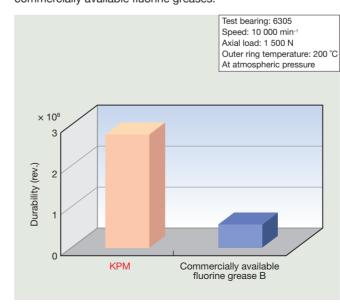
Operating Instructions and Notes

- KPM grease is for normal atmospheric conditions only.
- Not applicable for cleanroom environments.
- Keep bearings packed until immediately before mounting.
- See the tables on Page A24 for limiting loads and limiting rotational speeds.
- Ensure an optimum radial internal clearance for maximum rotational performance by applying a fit to the bearing that conisders bearing load, operating temperatures, materials of the shaft and/or housing (due to coefficient of linear expansion),
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

Features

- Usable in high-temperature environments up to 230 °C
- Longer operating life than commercially available fluorine greases (five times longer at 200 °C)
- Longer operating life than solid lubricant high-temperature bearings

Performance


Properties of grease

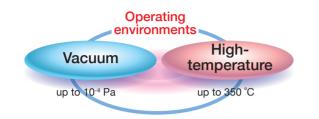
Name	NSK high-temperature KPM grease	Commercially available fluorine grease B
Base oil	Base oil Fluorine oil Fluorine oil	
Thickener	PTFE	PTFE
Kinematic viscosity (mm²/s, 40 °C)	420	390
Consistency	290	280
Maximum operating temperature (°C)	230	230

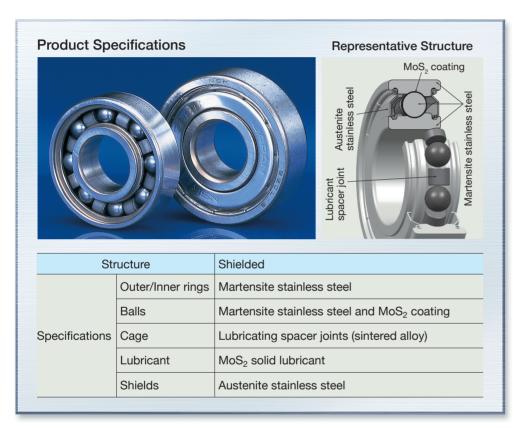
KPM: NSK-developed grease for use at atmospheric pressure only

Durability

KPM's operating life is approximately five times longer than commercially available fluorine greases.

Oil separation and grease residual rates


KPM is highly heat resistant, with lower oil separation rates at higher temperatures than commercially available fluorine greases.



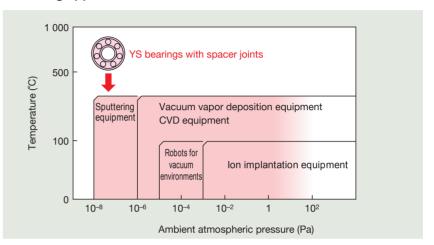
14. YS Bearings With Spacer Joints

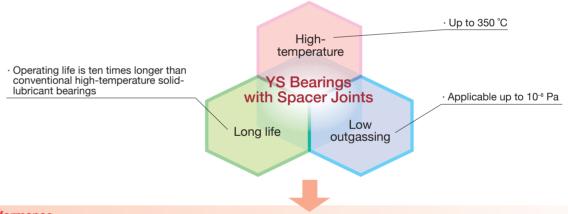
YS bearings with spacer joints are made of an alloy-based self-lubricating material (sintered alloy) between balls.

They are suitable for high-temperature and vacuum environments.

Applications: Ion implantation equipment, sputtering equipment, vacuum vapor deposition equipment

Operating Instructions and Notes

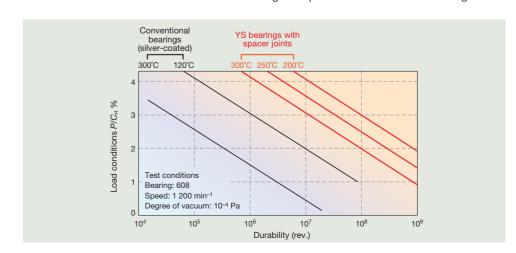

- For use in vacuum environments.
- Restrictions apply to bearings mounted to a vertical shaft due to a notch in the outer and inner rings. (Refer to the bearing manual)
- Keep bearings packed until immediately before mounting.
- Avoid storing the bearing for a long amount of time.
- Avoid exposure to any oil or moisture.
- The scope of application (limiting load, temperature) is listed in the table to the right.
- See the tables on Page A25 for limiting loads and limiting rotational speeds.
- Ensure an optimum radial internal clearance for maximum rotational performance by applying a fit to the bearing that considers bearing load, operating temperatures, materials of the shaft and/or housing (due to coefficient of linear expansion), etc.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.


YS bearings with spacer joints 150 200 250 300 350 400 Temperature (°C)

Features

- Grease-free, MoS₂ solid lubrication
- Usable in vacuum up to 10-8 Pa and temperatures up to 350 °C
- Operating life is 10 times longer than conventional high-temperature solid-lubricant bearings

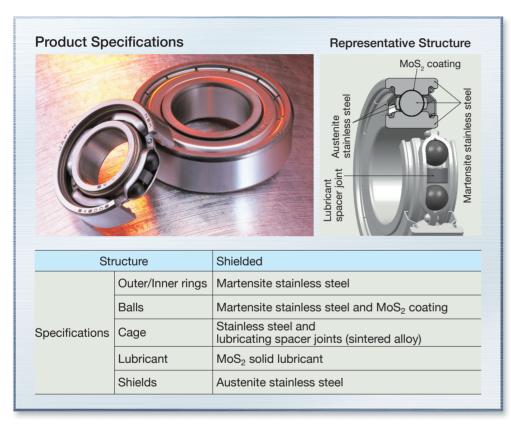
Bearing applications



Performance

Durability

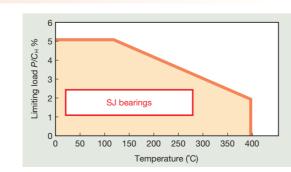
Over ten times more durable than conventional high-temperature solid-lubricant bearings.


15. SJ Bearings

Page A26

High-Temperature Environments (~400 °C)

SJ bearings have a "peapod" structure, with solid lubricant spacer joints mounted between two balls in cage pockets. These bearings are suitable for high-temperature environments at atmospheric pressure up to vacuum.



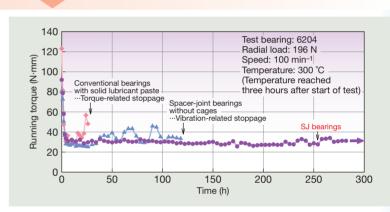
Applications: Vacuum vapor deposition equipment, kilns, kiln cars, steel plants, high-temperature conveyance equipment

Operating Instructions and Notes

- Do not use this bearing in an environment with excessive moisture or humidity.
- Keep bearings packed until immediately before mounting.
- Avoid storing the bearing for a long amount of time.
- Avoid exposure to any oil or moisture before use.
- The scope of application (limiting load, temperature) is listed in the table to the right.
- See the tables on Page A26 for limiting loads and limiting rotational speeds.
- Ensure an optimum radial internal clearance for maximum rotational performance by applying a fit to the bearing that considers bearing load, operating temperatures, materials of the shaft and/or housing (due to coefficient of linear expansion), etc.

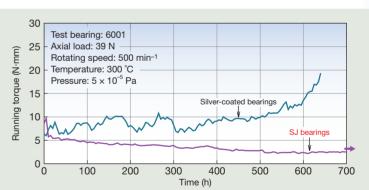
• All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

Features


- Grease-free, MoS₂ solid lubricant
- Applicable from atmospheric pressure up to vacuums at 10⁻⁸ Pa and temperatures up to 400 °C
- "Peapod" structure provides excellent torque stability and long life

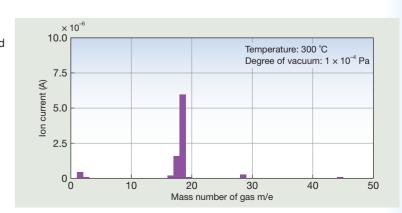
 Over six times more durable than conventional high-temperature bearings with solid lubricant paste · Up to 400 °C High temperature Operating life more than six times longer than that of conventional SJ Bearings Applicable up to 10-8 Pa bearings with solid lubricant paste Low Long life outgassing

Performance


Durability

More than six times more durable than bearings with conventional solid lubricant paste, and more than twice as durable as conventional cageless bearings with spacer joints.

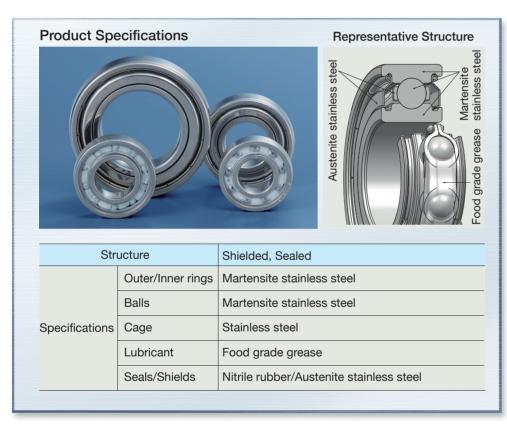
Durability of bearings in vacuum conditions


Outperforms silver-coated bearings in durability and torque stability.

Outgassing in vacuum conditions

No outgassing from chemical decomposition of the solid lubricant in spacer joints was seen in a hightemperature, vacuum environment.

Thus, pollution is not a concern with SJ bearings.



16. Food Grade Grease-Packed Bearings Pages A27-A28 Dimension and are the pages A27-A28 Dimension and A27-A28 Dimensio

These stainless steel bearings employ food-grade NSF*-registered grease for improved safety and are suitable for food processing machinery and pharmaceutical manufacturing equipment.

*NSF (International): U.S. non-profit third party accreditation organization that is internationally recognized in the field of public safety and health.

Applications: Food processing machinery, pharmaceutical manufacturing equipment

Operating Instructions and Notes

- Keep bearings packed until immediately before mounting.
- See the tables on Pages A27 and A28 for limiting loads and limiting rotational speeds.
- The grease is safe for incidental food contact only. Do not eat the grease.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

Features

- RLS grease is usable at temperatures up to 120 °C while BL2 grease is usable up to 200 °C.
- Both RLS and BL2 grease meet Halal and Kosher dietary laws.

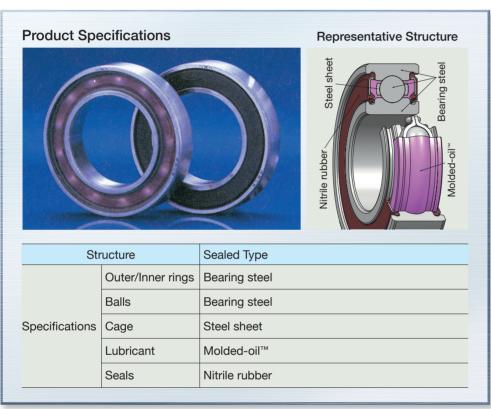
NSF Lubricant Categories

Safety Level

High H1: Usable where incidental food contact is possible

Low H2: Usable where there is no possibility of food contact

Performance

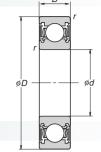

Properties of grease

Name	RLS	BL2 for high temperatures
NSF category	H1	H1
Base oil	Synthetic hydrocarbon oil	Fluorine oil
Thickener	Aluminum alloy soap	PTFE
Kinematic viscosity (mm²/s, 40 °C)	150	415
Consistency	280	280
Water wash-out	7.6%	0.1%
Operating temperature	0 – 120 °C	0 – 200 °C

17. Molded-Oil™ Bearings (For Contaminated Environments)

Molded-Oil[™] bearings feature a special material that provides a continuous supply of lubricating oil, allowing them to stand up to dust-contaminated environments at atmospheric pressure.

Applications: Food processing equipment, agricultural machines, woodworking machines, various conveyor lines


Operating Instructions and Notes

- For use in normal atmospheric conditions only.
- Because the solid lubricant used in these bearings will melt at a temperature of 120 °C, take care not to exceed temperatures of 100 °C when heating this bearing during the shrink-fit process for mounting.
- A radial load is required for the bearings to properly rotate. The minimum radial load to maintain proper rotation is at least 1 % of the basic dynamic load rating.
- Keep bearings packed until immediately before mounting.
- See the "4. Molded-Oil™ Bearings (Stainless Steel)" on Pages A33 and A34 for applications requiring corrosion resistance.
- The scope of application (applied load, limiting d_mn value) is listed in the table to the right.
- Avoid exposure to organic solvents with a degreasing effect.
- Bearings may not be usable in certain corrosive environments or conditions.
- All comments referencing certain values or performance in this catalog are for reference only. NSK provides this guide "as is" without express or implied warranties of any kind.

,	Applied load Limiting rotational speed, $d_{\rm m}n^{\rm (r)}$		steel bea	1% and 5% of tring dynamic load 1% of C _H must	ad rating C _H
			150 000 Refer to the chart below for temperatures above 35 °C		
N	ote (1) d _m		bore diamete otational spee	r + bearing outer di d (min-1)	iameter (mm))
Z _m Z	200 000				
2000	200 000 150 000				
olial speed unit					
rotational speed $a_m n$	150 000 100 000				
Um page minima de minima	150 000 100 000 50 000				
Limiting rotational speed $a_m n$	150 000 100 000 50 000		20	40	60

Features

- Continuous controlled flow of oil from Molded-Oil™ inside the bearing provides sufficient lubrication
- No grease or oil filling keeps operating environments clean
- Operating life in dust-contaminated environments is more than twice that with grease
- Comes standard with a contact seal (See table below).

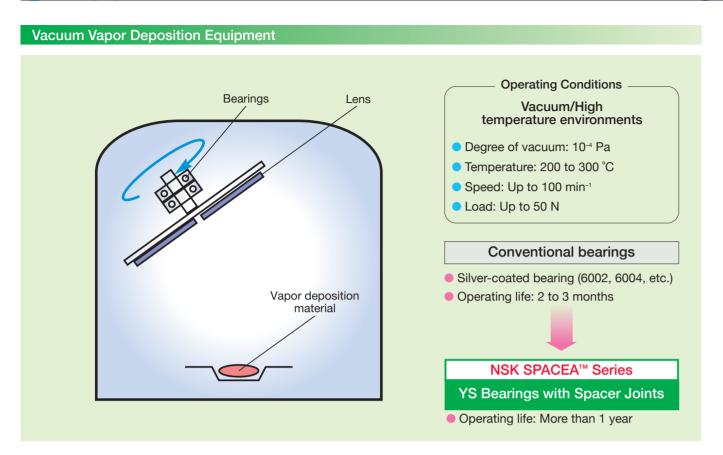
Rubber Sealed Type (example)

Table of Dimensions and Availability (Contact-Seal Type)

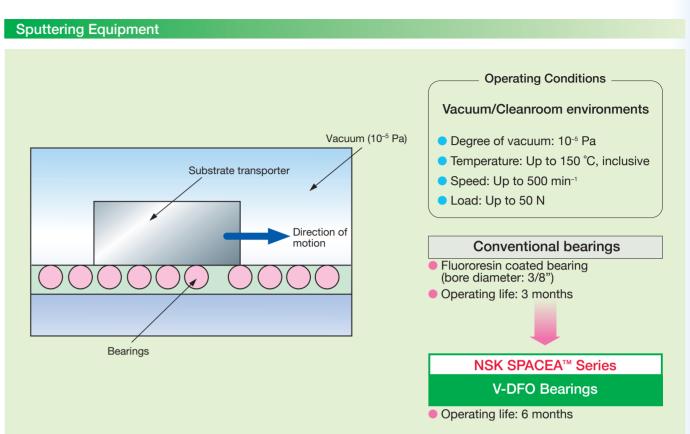
■ Inquiry designation⁽¹⁾ □□□□ L11DDU

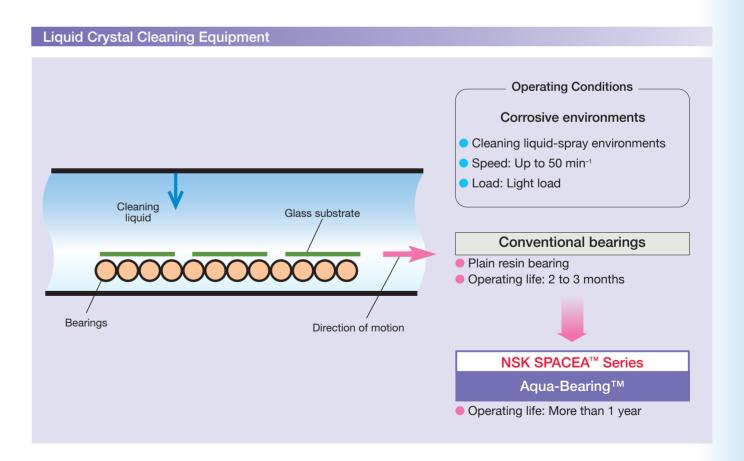
Boundary dimensions			Pagia	Limiting			
Bore diameter d	Outside diameter D	Width B	Chamfer dimension (min.)	Basic designation	Availability	speed ⁽²⁾ (reference value)	Applied load ⁽³⁾ (reference value)
(mm)	(mm)	(mm)	(mm)	0000		(min ⁻¹)	(N)
40	22	6	0.3	6900	•	9 370	25 - 110
10	26	8	0.3	6000	•	8 330	40 - 190
	30	9	0.6	6200	•	7 500	45 – 210
4.0	24	6	0.3	6901	•	8 330	25 – 120
12	28	8	0.3	6001	•	7 500	45 – 210
	32	10	0.6	6201	•	6 810	60 – 290
	28	7	0.3	6902	•	6 970	40 – 180
15	32	9	0.3	6002	•	6 380	50 – 230
	35	11	0.6	6202	•	6 000	65 – 320
17	35	10	0.3	6003	•	5 760	55 – 250
	40	12	0.6	6203	•	5 260	85 – 400
20	42	12	0.6	6004	•	4 830	80 – 390
20	47	14	1	6204	•	4 470	110 – 540
	47	12	0.6	6005	•	4 160	90 – 420
25	52	15	1	6205	•	3 890	120 – 590
	62	17	1.1	6305	•	3 440	180 – 870
	55	13	1	6006	•	3 520	120 – 560
30	62	16	1	6206	•	3 260	170 – 820
	72	19	1.1	6306	•	2 940	230 - 1130
	62	14	1	6007	•	3 090	140 – 680
35	72	17	1.1	6207	•	2 800	220 - 1 090
	80	21	1.5	6307	•	2 600	290 - 1410
	68	15	1	6008	•	2 770	150 – 710
40	80	18	1.1	6208	•	2 500	250 - 1 240
	90	23	1.5	6308	•	2 300	350 - 1720
	75	16	1	6009	•	2 500	180 – 890
45	85	19	1.1	6209	•	2 300	270 - 1 330
	100	25	1.5	9309	•	2 060	450 – 2 250
	80	16	1	6010	•	2 300	190 – 920
50	90	20	1.1	6210	•	2 140	300 - 1490
	110	27	2	6310		1 870	520 - 2600
			l		_	J	

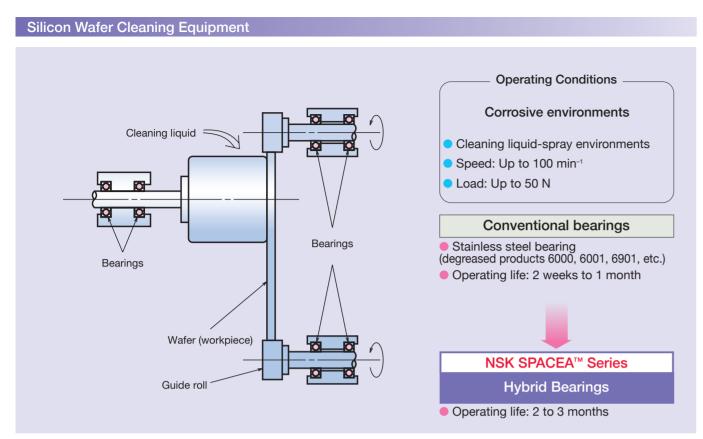
Mark: Stocked as standard inventory. (4)

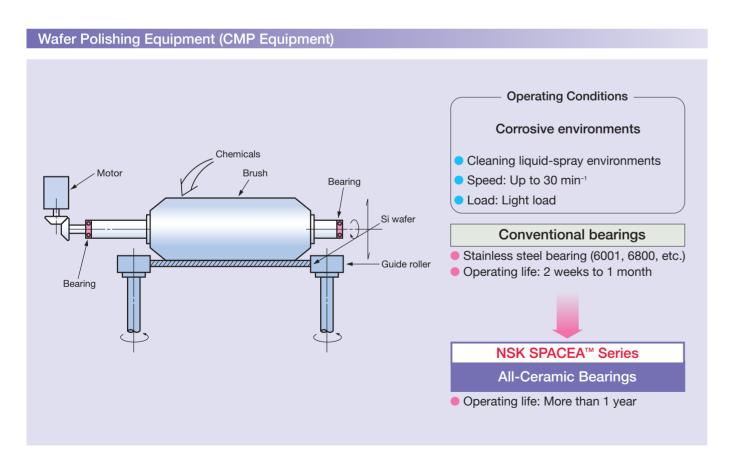

Notes (1) The actual designation may differ from the inquiry designation. [100] indicates the basic designation.

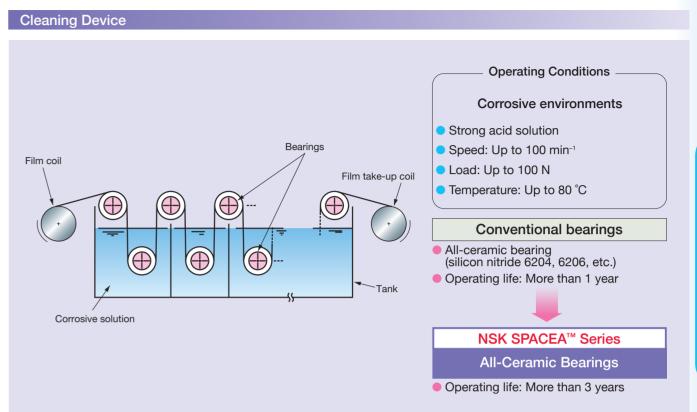
- (2) The limiting speed of these bearings has been calculated for 25 °C operating conditions. Limiting speeds will be slower for operating conditions of 35 °C or higher. (Refer to the previous page for further details.)
- (3) Applied load values are for reference only; they are not guaranteed.
- (4) Orders for standard inventory may be delayed, particularly if shipped from Japan.
- Remarks 1. The radial internal clearance for the bearings on this page is CN. See the radial internal clearance tables on Page A10 for further details.

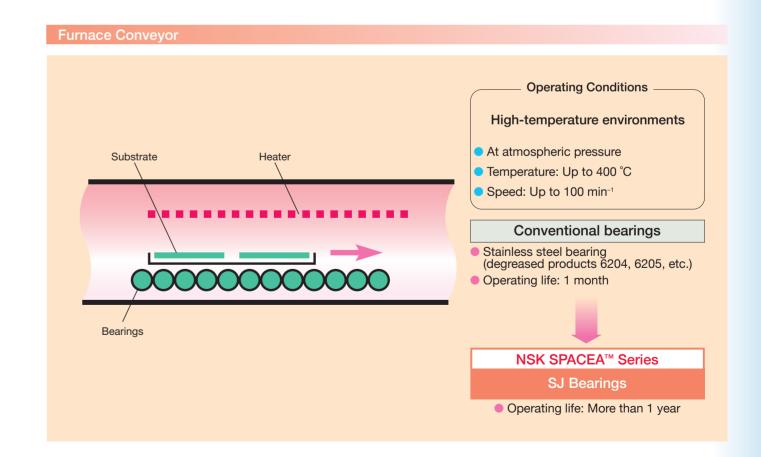



E Applications of SPACEA™ Series Bearings

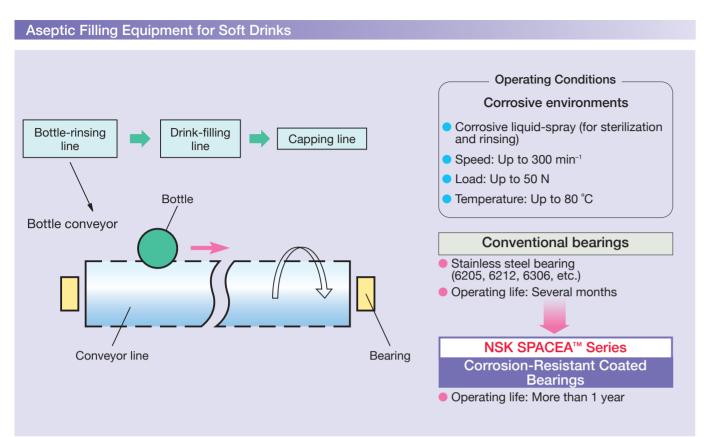


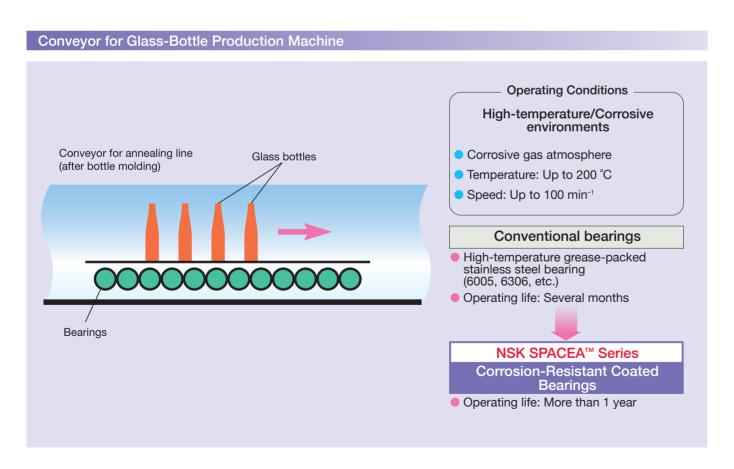

Robots for Vacuum Environments Operating Conditions Bearings Vacuum/Cleanroom environments Wafer Degree of vacuum: 10⁻⁴ Pa • Temperature: Up to 120 °C Speed: Low-speed swing Load: Moment load Conventional bearings Thin-walled bearing Inner/Outer rings: Stainless steel Balls: Special glass balls Operating life: 2 to 3 months NSK SPACEA™ Series N Series Thin-section Bearings (NBA2504, NBX15206, etc.) Inner/Outer rings: Stainless steel Balls: Ceramics Operating life: More than 1 year

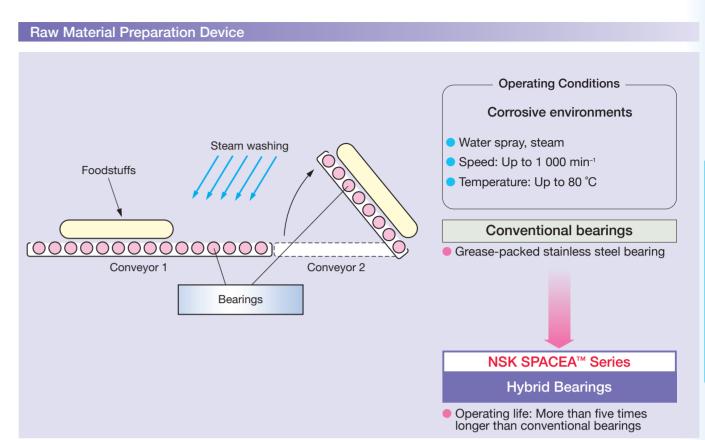


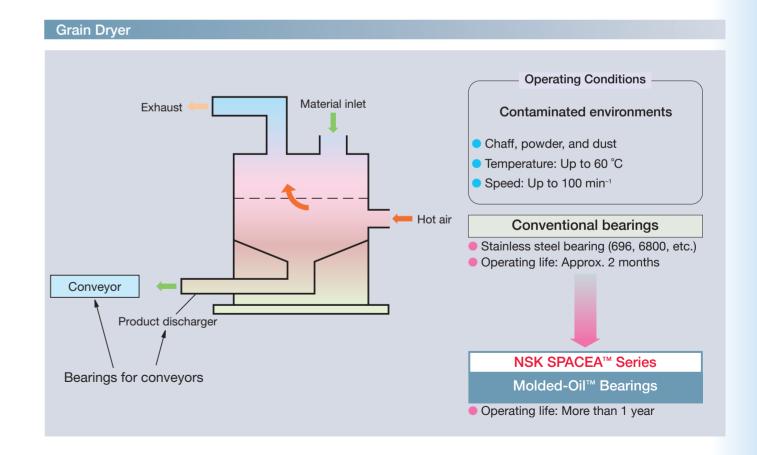


E Applications of SPACEA™ Series Bearings



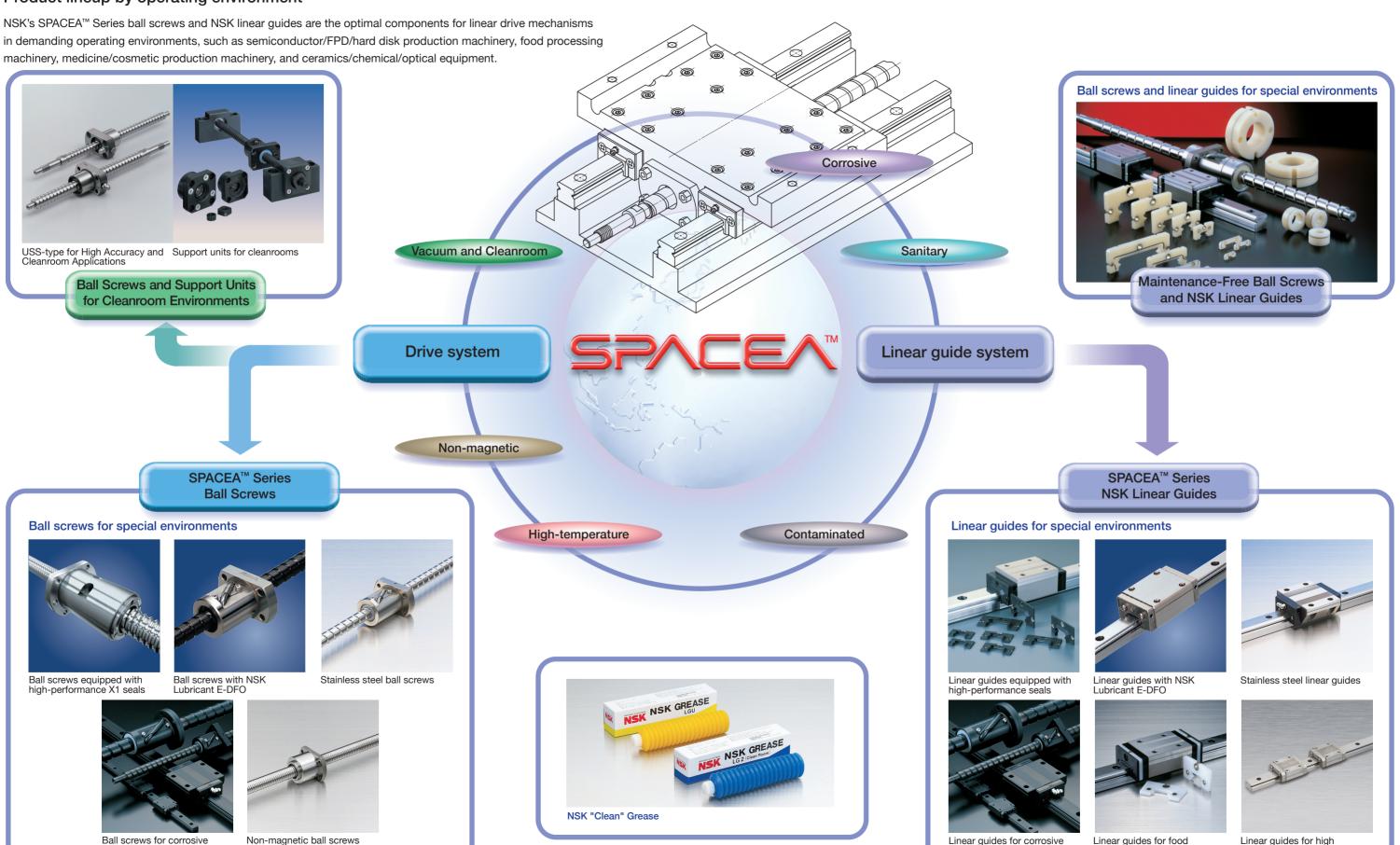





E Applications of SPACEA™ Series Bearings

SPACEA™ Series Precision Machine Components: Trusted Solutions for Special Environments

SPACEA™ Series ball screws and NSK Linear Guides utilize NSK's state-of-the-art technologies to deliver excellent performance, even in severe operating conditions.


Please see Pages B5-B6 for recommended products for specific applications.

SPACEA™ Series Ball Screws and NSK Linear Guides

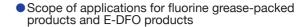
inventory
Selection Guide B5-B
Types and Specifications
Dimensions and Availability
1. Ball Screws
2. Support Units for Cleanrooms
3. NSK Linear Guides
Specifications, Operating Instructions, and Technical Data·······B13-B3
Corrosion-Resistant Ball Screws and NSK Linear Guides (Fluoride Low-Temperature Chrome Plating) B13-B1
2. LG2/LGU "Clean" Greases B15-B1
3. NSK Lubricant E-DFO
4. Compact FA-USS Model: High-Accuracy type for Cleanrooms
5. Support Units for Cleanroom Environments B21-B2
6. NSK K1 [™] /NSK K1-L [™] Lubrication Unit ····································
7. NSK High-Performance Seals ····· B27-B3
8. Ball Screws and NSK Linear Guides for High-Temperature Environments ······ B31–B3
Applications for SPACEA™ Series Ball Screws and NSK Linear GuidesB33-B3
Semiconductor Manufacturing Equipment/Flat Panel Display Manufacturing Equipment

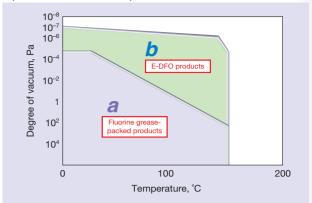
Product lineup by operating environment

B3 **NSK**

processing

environments

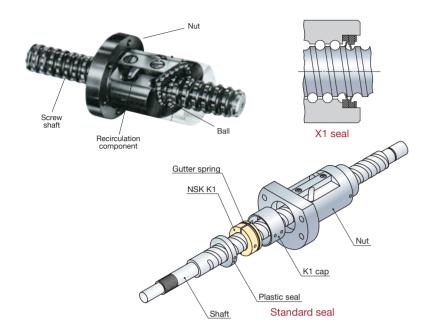

temperatures


Select the most appropriate product with the following flow chart.

Select the group of Find the series that products appropriate for meets your operating your operating environment conditions. and application.

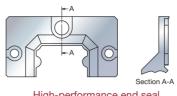
3 Select the product most appropriate in terms of availability and price.

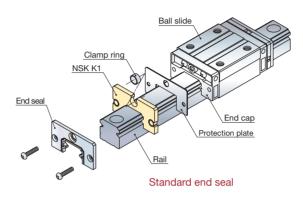
Check the operating instructions and notes.


① Dec											2 Oper	ating co	nditions										
	Operation	① ng environment	Product name		Deg	gree of vacuum Pa	n		Т	emperature °C	•	Cle (ISO/US	anlines Fed. Sto	s (1) I. Class)	Limiting	rotationa <i>l⋅n</i> value [©]	al speed	Limiting s	peed of lin m/min	ear guide	Price	Dimensions (availability)	· Specifications · Operating
	Operatii	ig environment			Atmospheric pressure	10-4			≤100	≤200	≤300	Classes 5-6 (100-1000)	Class 5 (100)	Class 4 (10)	≤50 000	≤100 000	≤150 000	≤100	≤200	≤300	Companson	(availability)	instructions Technical data
	Cleanroom	Atmospheric pressure	LG2 grease-packed ball screws and	linear guides					≤70 °C						≤70 00			≤100			Low		B15-B16, B19-B20,
Vacuum	Cleanfoon	(room temperature)	LGU grease-packed ball screws and	linear guides					≤120 °C						≥10 00			≥100			High		B23-B25
and cleanroom	Vacuum	From atmospheric pressure up to vacuum (room temperature)	Fluorine grease-packed ball screws a	and linear guides	See the	e scope of application	ons for	f	luorine grease-pac	ked products (uppe	er right) a	•			≤70 00	0		≤100			Low		B13-B14
	vacuum	From atmospheric pressure up to vacuum (up to 150 °C)	Ball screws and linear guides with NS	SK Lubricant E-DFO	See th	e scope of applica	ations	f	for E-DFO pro	ducts (upper r	right) b				≤70 00	0		≤100			High	Ball	B17-B18
	Non- magnetic	Non-magnetic (relative permeability 1.01 or less) (from atmospheric pressure up to vacuum)	Non-magnetic stainless steel ball scr guides	ews and linear		 10-⁵Pa			≤150)°C					≤70 00	0		≤100			-	screws (B9)	-
	Water	Water vapor, high-humidity environments	Ball screws and linear guides for corrosive environments	(Standard grease)					≤80 °C						≤70 00			≤100			Low	0	B13-B14,
Corrosive	vvaler	Water-immersed, water-spray	Ball screws and linear guides for corrosive environments	(Standard seal)					200 0						≥70 00			<u> </u>			High	Support units (B10)	B23-B24
Corrosive		Weak acid, weak alkali trong acid, strong alkali	Corrosion-Resistant coated ball screws and linear guides	(Fluorine grease) (Corrosion-Resistant					≤80 °C						≤70 00	0		≤100			Low	Linear	B13-B14
	3	trong acid, strong alkali	Stainless steel ball screws and linear guides	seal)				-	≤150) °C											High	guides (B11-B12)	
Sanitary	Food	d processing environments	Ball screws and linear guides for food	d processing	0			-	≤80 °C						≤70 00	0		≤100			-		B25-B26
Contaminated		Dust or wood chips	Ball screws equipped with high-perform Linear guides equipped with high-perform	ormance X1 seal rformance seal					≤80 °C						≤70 00	0		≤100			Low High		B13-B14, B23-B24, B27-B30
High- temperature	Atmos	pheric pressure (up to 150 °C)	Ball screws and linear guides for high environments	n-temperature				l	≤150) °C					≤70 00	0		≤100			_		B31-B32
Non- magnetic	From	atmospheric pressure up to vacuum	Non-magnetic stainless steel ball scr guides	rews and linear		10-⁵Pa		Ī	≤150) °C					≤70 00	0		≤100			-		-

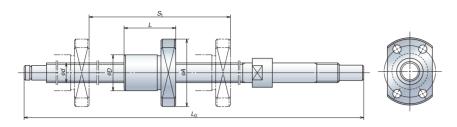
⁽¹⁾ Cleanliness is indicated per ISO 14644-1 (values in parentheses refer to former US FED-STD-209E Classes).

Cleanliness may vary depending on the usage conditions and surrounding structure.


 $⁽²⁾d \cdot n = \text{Shaft diameter of ball screws (mm)} \times \text{rotational speed (min}^{-1})$


SPACEA™ Series Ball Screws

SPACEA™ Series NSK Linear Guides


							Component specification	ns			· Specifications
	Operati	ng environment	Product name	Ball screw specifications	Shaft, nut	Ball	Recirculation components	Seal	Corrosion-Resistant	Lubricant	Operating instructions
				Linear guide specifications	Rail, ball slides	Dall	End cap	Seal	coating	Lubricant	· Technical data
	Claanyaan	Atmospheric pressure	LG2/LGU grease	e-packed ball screws and	Standard material	Standard material	Standard material	Standard	E	LG2 "Clean" grease, NSK K1/NSK K1-L	B15–B16, - B19–B20.
	Cleanroom	(room temperature)	linear guides					seal	Fluoride Low- Temperature chrome plating	LGU "Clean" grease, NSK K1/NSK K1-L	B23-B24
Vacuum and		From atmospheric pressure up to vacuum (room temperature)	Fluorine grease- linear guides	packed ball screws and	Martensite stainless steel	Martensite stainless steel	Austenite stainless steel		Cilionie plating	Fluorine grease	B13-B14
cleanroom	Vacuum	From atmospheric pressure up to vacuum (up to 150 °C)	Ball screws and E-DFO	linear guides with NSK Lubricant				_	_	E-DFO (+ DLC) or Molybdenum disulfide	B17-B18
	Non- magnetic	From atmospheric pressure up to vacuum	Non-magnetic st linear guides	tainless steel ball screws and	Special austenite stainless steel	Ceramics	Austenite stainless steel	Standard seal	-	Standard grease, Fluorine grease	-
	Water	Water vapor, high-humidity environments	Corrosion-resista	ant coated ball screws and	Standard material	Standard material	Standard material	Standard	Fluoride Low- Temperature	Standard grease + NSK K1/NSK K1-L	B13-B14,
Correcive	Water	Water-immersed, water-spray	Stainless steel b	all screws and linear guides	Martensite stainless steel	Martensite stainless steel		seal	chrome plating	Staridard grease + NSK KI/NSK KI-L	B23-B24
Corrosive		Weak acid, weak alkali		ant coated ball screws and	Standard material	Standard material	Austenite stainless steel	Corrosion-	Fluoride Low- Temperature	Fluorine grease	B13-B14
	S	Strong acid, strong alkali	Stainless steel b	all screws and linear guides	Martensite stainless steel	Martensite stainless steel		resistant seal	chrome plating	ridoffile grease	613-614
Sanitary	Food	d processing environments	Ball screws and food processing		Martensite stainless steel	Martensite stainless steel	Austenite stainless steel	Standard seal	_	Grease for food processing applications, NSK K1 for food processing applications and medical devices	B25-B26
Contaminated		Dust or wood chips	Ball screws equi seal	pped with high-performance X1	Standard material	Standard material	Standard material	X1 seal	Fluoride Low- Temperature	Standard grease	B13-B14, B27
Contaminated	1	Dust or wood chips	Linear guides eq seal	uipped with high-performance	Standard material	Standard material	Standard material	High dust- resistant seal	chrome plating	Standard grease + NSK K1/NSK K1-L	B13-B14, B23-B24, B28-B30
High- temperature	Atmos	pheric pressure (up to 150 °C)	Ball screws and high-temperature		Martensite stainless steel	Martensite stainless steel	Austenite stainless steel	(High dust- resistant seal)	-	Heat-resistant grease, Fluorine grease	B31-B32
Non- magnetic	From atm	ospheric pressure up to vacuum	Non-magnetic st linear guides	tainless steel ball screws and	Special austenite stainless steel	Ceramics	Austenite stainless steel	Standard seal	_	Standard grease, Fluorine grease	_

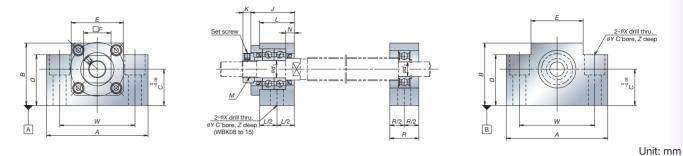
Note: Under radioactive operating conditions, resins used in standard products may cause distortion and lubricants may deteriorate. Please consult with NSK for appropriate product selection.

B7 **NSK**

Dimensions and Availability of SPACEA™

1. Ball Screw Dimensions

<u>-</u>			Effective	Number	Dimensior Nut	Flange						Suitability	for special en	vironments	(availability)	
	Shaft diameter	Lead	turns of balls	of starts	outer diameter	outer diameter	Nut length	Maximum shaft length	Stroke	Dynamic load rating	Cleanroom	Vacuum	Corrosive	Sanitary	Contaminated	High- temperatu
	6	1	1×3	1	D 12	24	21	L₀max 174	100	(N) 555						
	0	1	1×3	1	14	27	21	248	150	645	\vdash				+	1
	8	2	1×3	1	16	29	28	248	150	1 270	\mathbb{R}^{+}		$\vdash \times$			
		2	1×3	1	18	35	29	308	200	1 470	\sim					
	10	4	2.5×1	1	26	46	34	430	300	2 630	\sim					
		2	1×3	1	20	37	29	380	250	1 600	Ŏ		Ŏ	Ŏ		
Ά	12	5	2.5×1	1	30	50	40	580	450	3 590	Ŏ		Ŏ	Ŏ		
		10	2.5×1	1	30	50	50	580	450	3 620	Ŏ		Ŏ	Ŏ		
	4.5	10	2.5×1	1	34	57	51	1 161	1 000	6 660	Ŏ		Ŏ	Ŏ		
	15	20	1.7×1	1	34	55	45	1 161	1 000	4 630	Ŏ		Ŏ	Ŏ		
	16	2	1×4	1	25	44	40	461	300	3 400				0		
	20	20	1.5×1	1	46	74	63	1 208	1 000	6 700				0		
J	10				23	43	29	521	433	3 420						
S	12	5	2.7×1	1	24	44	30	621	530	3 750						
S	15				28	51	30	761	653	6 410						
	10	2	1×3	1	22	39	29	308		1 470	0	0	0	0		
	10	4	2.5×1	1	26	46	34	430		2 630		0				
		2	1×3	1	24	41	29	380		1 600	0	0	0	<u> </u>		
	12	5	2.5×1	1	30	50	40	580		3 590	0	0				
		10	2.5×1	1	30	50	50	580		3 620	0	0	0	0		
	15	10	2.5×1	1	34	57	51	1 161		6 660	0	0				
		20	1.7×1	1	34	55	45	1 161		4 630	0	0		0		
	16	2	1×4	1	30	49	40	461		3 400	0	0		0		
	20	20	1.5×1	1	46	74	63	1 208		6 700	0	0	0	0		
	25	5	2.5×2	1	50	73	55	1 800		16 000	0	0				
		25	1.5×1	1	44	71	90	1 800		9 610		<u> </u>				
		5	2.5×2	1	58	85	106	2 400		17 800	\bigcirc	\bigcirc				
		10	2.5×2	1	74	108	125	2 400		44 500		9		0		
	32	20	2.5×1	1	78	105	107	2 400		16 900		-				1 8
		25	2.5×1	1	78	105	120	2 400		16 700	\vdash	$ \otimes$ $-$				$\vdash \otimes$
ō		32	1.5×1	1	51	85	109	2 400		10 900	\sim	0		$\vdash \times$		
a		32	1.7×2	2	56	86	109	2 800		32 100	\mathbb{R}^{+}					
e		25	2.5×1	1	100	133	136	3 000		27 900	$ \times$ $-$	\sim	$\vdash \times \vdash$			$\vdash \times$
_		32 40	1.5×2 1.5×1	1	100 64	133 106	122 133	3 000		32 100 17 400	\sim	\sim				$\vdash \times$
0	40	10	2.5×2	1	82	124	173	2 900		61 200	$\vdash \times \vdash$			$\vdash \times \vdash$		1
9	40	12	2.5×2	1	86	128	197	2 900		71 700	\vdash			$\vdash \overset{\smile}{\sim}$	+	
Production on demand		16	3.7×1	1	86	128	172	2 900		66 900	$\vdash {\sim}$			$\vdash \overset{\sim}{\prec}$	+	
0		20	2.7×2	2	86	128	164	2 900		77 900	$\vdash X \vdash$			$\vdash \prec$	$\vdash $	
Ĺ		8	2.5×4	1	82	120	162	3 300		65 300	\sim			$\vdash \overset{\smile}{\cap}$		
		10	2.5×2	1	88	132	117	3 300		53 800	$\vdash \overset{\sim}{\sim}$	\sim		$\vdash \overset{\sim}{\sim}$		$\vdash $
	45	8	2.5×2	1	82	124	146	2 900		44 000	\vdash			$\vdash \overset{\sim}{\cap}$		\vdash
	.0	16	3.7×1	1	92	134	173	2 900		69 900	Ŏ			Ŏ	Ιŏ	
		20	2.7×2	2	92	134	164	2 900		83 200	Ŏ			Ŏ	ĬŎ	
		8	2.5×4	1	90	129	149	3 500		67 900	Ŏ	\bigcirc		Ŏ		
		10	2.5×4	1	93	135	163	3 500		101 000	Ŏ	Ŏ	Ŏ	Ŏ		
		25	2.5×1	1	120	156	140	3 300		42 000	Ŏ	Ŏ	Ŏ	$\overline{}$		ΙŎ
		32	2.5×1	1	120	156	158	3 300		41 600	Ŏ	Ŏ	Ŏ			ΙŎ
		40	1.5×2	2	120	156	140	3 300		48 000	Ŏ	Ŏ	Ŏ		İ	ĬŎ
	50	50	1.5×1	1	80	126	161	3 500		25 900	Ŏ	Ŏ	Ŏ	\cap	İ	ĬŎ
		50	1.5×2	2	120	156	158	3 500		47 100	Ŏ	Ŏ	Ŏ		İ	ĬŎ
		10	2.5×2	1	93	135	174	2 900		68 100	Ŏ					l
		12	2.5×2	1	100	146	200	2 900		91 500	Ó			Ŏ	Ŏ	
		16	3.7×1	1	98	140	173	2 900		72 700	Ó			Ŏ	IŎ	
		20	2.7×2	2	98	140	164	2 900		85 700				~	$\overline{}$	

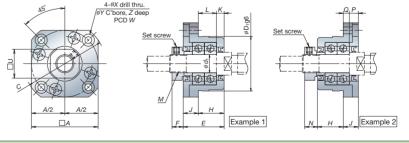

Contact NSK for the details of availability

Note: The dynamic load ratings listed are for martensite stainless steel screws, with the internal clearance as a reference. These may vary depending on materials or internal specifications.

2. Dimensions of Support Units for Cleanrooms

Series Ball Screws

Square type



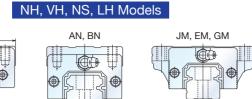
		Fixed sup	port side u	nit (square	type)				
Reference No. (for use in clean environments)	Locknut tightening torque (reference) [N·cm]	Set screw tightening torque (reference) [N·cm]	d ₁	F	J	К	L	N	М
WBK08-01C	230	69 (M3)	8	14	23	7	_	4	M8 × 1
WBK10-01C	280	147 (M4)	10	17	30	5.5	24	6	M10 × 1
WBK12-01C	630	147 (M4)	12	19	30	5.5	24	6	M12 × 1
WBK15-01C	790	147 (M4)	15	22	31	12	25	5	M15 × 1

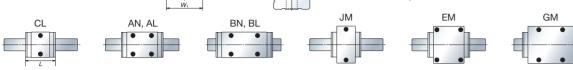
											Offic. Hilli				
Simple suppor	t side unit		Dimensions common with square type												
Reference No. (for use in clean environments)	d ₂	R	А	В	С	D	Ε	W	Х	Y	Z				
WBK08S-01C	6	15	52	32	17	26	25	38	6.6	11	12				
WBK10S-01C	8	20	70	43	25	35	36	52	9	14	11				
WBK12S-01C	10	20	70	43	25	35	36	52	9	14	11				
WBK15S-01C	15	20	80	50	30	40	41	60	11 9	17 14	15 11				

Note: For dimensions X, Y, and Z for WBK15S-01C, the upper number indicates dimensions of the fixed support side unit, and the lower number shows dimensions of the simple support side unit.

Round type

U	IT:	m	1


Reference No. (for use in clean environments)							ı	ixed s	suppor	t side	unit (ro	ound t	ype)						
	d ₁	Α	С	U	W	X	Y	Z	<i>D</i> ₁	E	F	Н	J	K	L	N	Р	Q	М
WBK08-11C	8	35	43	14	35	3.4	6.5	4	28	23	7	14	9	4	10	8	5	4	M8 × 1
WBK10-11C	10	42	52	17	42	4.5	8	4	34	27	7.5	17	10	5	12	8.5	6	4	M10 × 1
WBK12-11C	12	44	54	19	44	4.5	8	4	36	27	7.5	17	10	5	12	8.5	6	4	M12 × 1
WBK15-11C	15	52	63	22	50	5.5	9.5	6	40	32	12	17	15	6	11	14	8	7	M15 × 1


Note: Refer to the dimensions of square type support units for tightening torque of locknuts and setscrews.

Dimensions and Availability of SPACEA™ Series NSK Linear Guides

3. NSK Linear Guide Dimensions

<u></u>				Dim	nensions (mm)				Suitability 1	for special er	nvironments (availability)	
Model	Model No.	Height	Overall width	Ball slide	e length (L)	Rail width	Dynamic load rating				High-		
Σ		Н	W	Standard	With NSK K1	W_1	(N)	Cleanroom	Vacuum	Corrosive	temperature	Sanitary	Contaminate
	NH15AN	28	34	55	65.6	15	14 200	0		0		0	
	NH15BN NH15EM	28 24	34 47	74 55	84.6 65.6	15 15	18 100 14 200	0				0	
	NH15GM	24	47	74	84.6	15	18 100	0				<u> </u>	
	NH20AN	30	44	69.8	80.4	20	23 700	Ŏ	0	Ŏ	0	Ŏ	
	NH20BN	30	44	91.8	102.4	20	30 000	0	0	0	0	0	
	NH20EM NH20GM	30 30	63 63	69.8 91.8	80.4 102.4	20	23 700 30 000	0				0	
	NH25AN	40	48	79	90.6	23	33 500	Ŏ	Ŏ	Ŏ	Ŏ	Ŏ	
	NH25BN	40	48	107	118.6	23	45 500	0	0	0	0	0	
	NH25AL NH25BL	36 36	48 48	79 107	90.6	23	33 500 45 500	0	0	0	0	0	
	NH25EM	36	70	79	90.6	23	33 500	ŏ	ŏ	Ŏ	Ŏ	ŏ	
	NH25GM	36	70	107	118.6	23	45 500	0	0	0	0	0	
	NH30AN NH30BN	45 45	60	85.6 124.6	97.6 136.6	28 28	41 000 61 000	8	8		0		
	NH30AL	42	60	85.6	97.6	28	41 000	ŏ	ŏ	Ŏ	ŏ	ŏ	
	NH30BL	42	60	124.6	136.6	28	61 000	Ō	Ō	0	Ō	Ō	
	NH30EM	42	90	98.6	110.6	28	47 000	0		0	0		
	NH30GM NH35AN	42 55	90	124.6 109	136.6 122	28 34	61 000 62 500	0				0	
NH	NH35BN	55	70	143	156	34	81 000	ŏ		ŏ	ŏ	ŏ	
	NH35AL	48	70	109	122	34	62 500	Q		0	O	Q	
	NH35BL NH35EM	48	70 100	143 109	156 122	34 34	81 000 62 500	0		0		0	
	NH35GM	48	100	143	156	34	81 000	ŏ		Ŏ	ŏ	ŏ	
	NH45AN	70	86	139	154	45	107 000	0		0	0		
	NH45BN NH45AL	70 60	86 86	171 139	186 154	45 45	131 000 107 000	0		0	0		
	NH45BL	60	86	171	186	45	131 000	0			Ö		
	NH45EM	60	120	139	154	45	107 000	Ō		0	Ō		
	NH45GM NH55AN	60	120	171	186	45	131 000			0	0		
	NH55BN	80 80	100	163 201	178 216	53 53	158 000 193 000	0		0			
	NH55AL	70	100	163	178	53	158 000	ŏ		Ŏ			
	NH55BL	70	100	201	216	53	193 000	0		0			
	NH55EM NH55GM	70 70	140 140	163 201	178 216	53 53	158 000 193 000	0					
	NH65AN	90	126	193	211	63	239 000	Ŏ		Ŏ			
	NH65BN	90	126	253	271	63	310 000	0		0			
	NH65EM NH65GM	90	170 170	193 253	211 271	63 63	239 000 310 000	8		8			
	VH15AN	28	34		0.6	15	14 200	Ŏ		Ŏ			0
	VH15BN	28	34		9.6	15	18 100	0		0			0
	VH15EM VH15GM	24	47		0.6 9.6	15 15	14 200 18 100	0					
	VH20AN	30	44		7.4	20	23 700	Ŏ		Ŏ			Ŏ
	VH20BN	30	44		9.4	20	30 000	0		0			0
	VH20EM VH20GM	30 30	63 63		7.4 9.4	20	23 700 30 000	0		0			0
	VH25AN	40	48	9		23	33 500	Ŏ		Ŏ			Ŏ
	VH25BN	40	48	12		23	45 500	0		0			0
	VH25AL VH25BL	36 36	48	12		23	33 500 45 500	0		0			0
	VH25EM	36	70	9		23	33 500	ŏ		ŏ			ŏ
	VH25GM	36	70	12		23	45 500	0		0			0
	VH30AN VH30BN	45 45	60		3.4	28 28	41 000 61 000	0		8			
	VH30AL	42	60		4.4	28	41 000	ŏ		ŏ			ŏ
VH	VH30BL	42	60	14	3.4	28	61 000	Ŏ		Ŏ			Ŏ
	VH30EM VH30GM	42 42	90		7.4 3.4	28 28	47 000 61 000	0					
	VH35AN	55	70		8.8	34	62 500						
	VH35BN	55	70	16	2.8	34	81 000	Ŏ		0			Ŏ
	VH35AL	48	70		8.8	34	62 500	0		0			0
	VH35BL VH35EM	48 48	70 100		2.8 8.8	34 34	81 000 62 500	0		0			0
	VH35GM	48	100	16	2.8	34	81 000	Ŏ		Ŏ			ŏ
	VH45AN	70	86		1.4	45	107 000	0		0			Q
	VH45BN VH45AL	70 60	86 86		1.4	45 45	131 000 107 000	0		0			
	VH45BL	60	86		3.4	45	131 000	ŏ		ŏ			ŏ
	VH45EM	60	120	16	1.4	45	107 000	0		Ö			Ŏ
	VH45GM VH55AN	60 80	120		3.4 5.4	45 53	131 000 158 000	0					
	VH55BN	80	100		3.4	53	193 000	0					Ö
	VH55AL	70	100		5.4	53	158 000	Ŏ		Ŏ			Ŏ

LW Model	PU Model	LU Model	PE Model	LE Model
EL	TR, AR, AL, TL	UR, BL, UL	CL, SL AR,	TR, AL, TL UR, BR, UL, BL

<u></u>				Dim	nensions (mm)				Suitability f	or special er	nvironments ((availability)	
Model	Model No.	Height	Overall width	Ball slide	length (L)	Rail width	Dynamic load rating	Cleanroom	Vacuum	Corrosive	High-	Sanitary	Contaminate
2		Н	W	Standard	With NSK K1	W_1	(N)	Sicarifooili	vacuum	Johnosive	temperature	Garmary	Jonanniale
	VH55BL	70	100	223	3.4	53	193 000	0		0			0
VH	VH55EM	70	140	18		53	158 000	Ö		Ō			Ō
	VH55GM	70	140	223		53	193 000	0		0			0
	NS15CL NS15AL	24	34	40.4 56.8	50 66.4	15 15	7 250 11 200	0	8		0	0	
	NS15JM	24	52	40.4	50	15	7 250	ŏ	ŏ	ŏ	ŏ	ŏ	
	NS15EM	24	52	56.8	66.4	15	11 200	Ō	Ō	Ō	Ō	Ō	
	NS20CL	28	42	47.2	57.8	20	10 600	0	8	0	0	<u> </u>	
	NS20AL NS20JM	28	42 59	65.2 47.2	75.8 57.8	20	15 600 10 600	0	0	0	0	0	
	NS20EM	28	59	65.2	75.8	20	15 600	ŏ	ŏ	ŏ	ŏ	ŏ	
	NS25CL	33	48	59.6	70.2	23	17 700	Ŏ	Ŏ	Ŏ	Ŏ	Ŏ	
NS	NS25AL	33	48	81.6	92.2	23	26 100	0	0	0	0	<u> </u>	
	NS25JM NS25EM	33	73 73	59.6 81.6	70.2 92.2	23 23	17 700 26 100		0	0		0	
	NS30CL	33 42	60	67.4	79.4	28	24 700		0	0	0*	0	
	NS30AL	42	60	96.4	108.4	28	38 000	ŏ	Ŏ	Ŏ	*	ŏ	
	NS30JM	42	90	67.4	79.4	28	24 700	0	0	0	0*	0	
	NS30EM NS35CL	42 48	90	96.4 77	108.4 90	28 34	38 000 34 500	0	0	0	0*	0	
	NS35AL	48	70	108	121	34	52 500	Ö		0		0	
	NS35JM	48	100	77	90	34	34 500	ŏ		ŏ		ŏ	
	NS35EM	48	100	108	121	34	52 500	0		0		0	
	LW17EL	17	60	51.4	61.6	33	5 600	0		0	O*	<u> </u>	
LW	LW21EL LW27EL	21	68 80	58.8 74	71.4 86.6	37 42	6 450 12 800			0	0*		
LVV	LW35EL	35	120	108	123	69	33 000	ŏ		Ŏ		ŏ	
	LW50EL	50	162	140.6	155.6	90	61 500	Ō		Ŏ		Ŭ	
	PU09TR	10	20	30	36.4	9	1 490	0		0		<u> </u>	
	PU09UR PU12TR	10	20	41 35	47.4 42	9 12	2 100 2 830			0		0	
PU	PU12UR	13	27	48.7	55.7	12	4 000	Ö		<u> </u>		0	
	PU15AL	16	32	43	51.2	15	5 550	Ŏ		Ŏ		Ŏ	
	PU15BL	16	32	61	69.2	15	8 100	0		0		0	
	LU05TL	6 8	12 17	18 20.4	24.4 29.4	5 7	545 1 090	0		0			
	LU07AL LU09AL,TL	10	20	26.8	34.2	9	1 760		0	0	0	0	
	LU09AR,TR	10	20	30	36.4	9	1 490	ŏ		ŏ		ŏ	
LU	LU09BL,UL	10	20	41	47.4	9	2 600	O O	Q	Q	0	0	
LU	LU12AL,TL	13	27	34	41	12	2 830	Ŏ	0	0	0	<u> </u>	
	LU12AR,TR LU12BL,UL	13 13	27	35.2 47.5	42.2 54.5	12 12	2 830 4 000	0	0		0	0	
	LU15AL	16	32	43.6	51.8	15	5 550	Ŏ	Ŏ	Ŏ	0*	Ŏ	
	LU15BL	16	32	61	69.2	15	8 100	Ō	Ō	Ō	0*	Ō	
	PE09TR	12	30	39.8	46.8	18	3 000	<u> </u>		0			
	PE09UR PE12AR	12 14	30 40	51.2 45	58.2 53	18 24	4 000 4 350	0		0		0	
PE	PE12BR	14	40	60	68	24	5 800	ŏ		ŏ		ŏ	
	PE15AR	16	60	56.6	66.2	42	7 600	Ō		Ŏ		Ŏ	
	PE15BR	16	60	76	85.6	42	10 300	0		0		0	
	LE05CL LE05AL	6.5 6.5	17	20 24	-	10 10	595 725	0		0			
	LE07SL	9	25	22.4	28.4	14	980	Ö	0	0	0*		
	LE07TL	9	25	31	37	14	1 580	Ŏ	Ŏ	Ŏ	O*		
	LE07UL	9	25	42	48	14	2 180	0	0		0*		
	LE09CL,SL LE09AL,TL	12 12	30	26.4 39	33.4 46	18 18	1 860 3 000	0	0	0	0*	0	
	LE09AL,TE	12	30	39.8	46.8	18	3 000	ŏ		0	0.	ŏ	
LE	LE09BL,UL	12	30	50.4	57.4	18	4 000	Ŏ	0	Ŏ	0*	Ŏ	
	LE12CL	14	40	30.5	38.5	24	2 700	0	0	0	0	0	
	LE12AL LE12AR	14	40	44 45	52 53	24	4 350 4 350	0	0	0	Ō	0	+
	LE12BL	14	40	45 59	67	24	5 800	ŏ	0	0	0	0	
	LE15CL	16	60	41.4	51	42	5 000	Ŏ	Ŏ	Ŏ	Ŏ	ŏ	
	LE15AL	16	60	55	64.6	42	7 600	0	0	0	0	0	
	LE15AR LE15BL	16 16	60	56.6 74.4	66.2	42 42	7 600	0	0	0	0	0	
	LH08AN	11	16	24	84 31	8	10 300 1 240			0			
LH	LH10AN	13	20	31	40	10	2 250	ŏ		Ŏ			
	LH12AN	20	27	45	54	12	5 650	Ŏ	0	Ŏ	0*	0	

^{*}Seals are not applicable in high-temperature environments. Contact NSK for details. \bigcirc : Made to Order (If blank, consult with NSK)

1. Corrosion-Resistant Ball Screws and NSK Linear Guides (Fluoride Low-Temperature Chrome Plating)

NSK Linear Guides and ball screws are used in industrial machinery, semiconductor production, flat panel display manufacturing equipment, and more. Preventing rust from developing in these applications is crucial, particularly for machines around water such as part/device washers and for semiconductor/FPD manufacturing equipment involved in chemical wet processing.

NSK applies a fluororesin coating to an electrolytic black plating (flouride low-temperature chrome plating) on these linear guides and ball screws for optimal rust resistance.

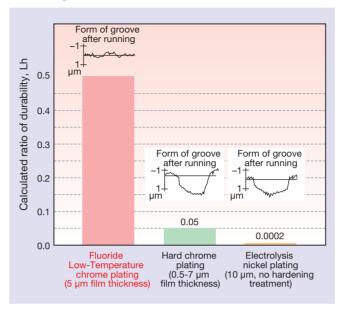
Fluoride Low-Temperature Chrome Plating

Electrolytic rust-resistant black plating + fluororesin coating

- Black plating: treated to form a stable thin film (1-2 µm), which is a form of black chrome galvanization
- A fluororesin coating is applied to this film to enhance corrosion resistance
- enables stable, accurate control
- Thin-film and high corrosion-resistance properties reduce factors that might adversely affect the accuracy of parts
- Low-Temperature treatment with no hydrogen brittleness
 Outstanding durability on rolling surfaces, compared with
 - More economical than other surface-treated or stainless steel products

Note: Avoid using organic solvents, which may degrade the treatment's rust prevention properties.

A: No rust B: No rust, but slight discoloration C: Spot rust


Test results for corrosion resistance to humidity

Cha	aracte	Type	Fluoride Low-Temperature chrome plating	Hard chrome plating	Electrolysis nickel plating	SUS440C	Standard product
		Upper face	(Grinding) B	(Grinding) B	(Grinding) A	(Grinding) C	(Grinding) D
	rust	Side face	(Grinding) A	(Grinding) A	(Grinding) A	(Grinding) C	(Grinding) E
	₽	Bottom face	(Grinding) A	(Grinding) A	(Grinding) A	(Grinding) C	(Grinding) E
	Level	End face	(Cutting) A	(Cutting) C	(Cutting) A	(Cutting) C	(Cutting) E
		Chamfer, Grinding off	(Drawing) A	(Drawing) D	(Drawing) A	(Drawing) C	(Drawing) E
Rust prevention	TeTeR	conditions esting machine: Dabaiespeck high- temperature and high- humidity vessel emperature: 70 °C elative humidity: 95% ime: 96 hours		O			O
	te co To	ime to/from target emperature and humidity onditions. o target: 5 hours fter target: 2 hours					A core . Video. News
	Film thickness		5 μm	0.5–7 μm	10 µm	_	-

D: Slightly rusted

E: Completely rusted

 Surface treatment durability test results for linear guides

Comprehensive evaluation

	Available length	Rust resistance	Stable quality	Durability	Cost		
Fluoride Low- Temperature chrome plating	◎ (4 m)	0	0	0	Low		
Hard chrome plating	△ (2 m)	0	×	Δ	High		
Electrolysis nickel plating	(4 m)	0	Δ	×	High		
SUS440C	○ (3.5 m)	0	0	0	High		
②: Superior△: Good△: Not idealX: Problem—restricted use							

Test results for corrosion resistance to chemical exposure

Test conditions - Base material of rail: equivalent to SUS440C Chemical concentration: 1 normal (1N)

Fluoride Low-Temperature chrome plating	Exposure type	Hard chrome plating	No surface treatment
	24-hour soaking Nitric acid	0	0
	24-hour soaking Hydrofluoric acid	0	
	72-hour vapor Hydrochloric cleansing liquid HCI: H ₂ O ₂ : H ₂ O = 1:1:8		
0	Hydrochloric liquid (soaking)	0	A
0	Sulfuric acid (soaking)	0	×
0	Ammonia or sodium hydroxide	0	Δ

▲: Damage to entire surface

X: Corrosion

Level of rust

2. LG2/LGU "Clean" Grease

LG2 and LGU "clean" greases are utilized for low-dust specifications of NSK products such as linear guides, ball screws, Monocarriers, Megatorque Motors, XY modules and XY tables. These greases are excellent for cleanrooms thanks to their lower particle emissions and better resistance to corrosion than fluorine greases. Their proven track record makes them particularly suitable for semiconductor production equipment.

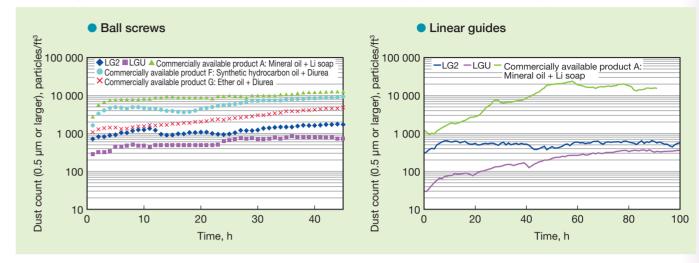
Features

- Low-dust characteristics that outperform fluorine greases
- Low torque—less than 20% that of fluorine greases
- Over ten times more durable than fluorine greases
- Superior rust prevention superior to fluorine greases

Note: LG2/LGU greases are for use at atmospheric pressure. Fluorine greases or other NSK greases are recommended for vacuum applications.

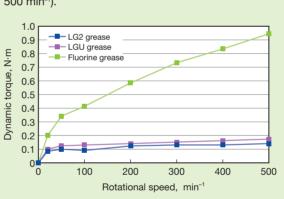
Properties

Operating environment	For use exclusively at	From atmospheric pressure up to vacuum	
Product	LG2	LGU	Commercially available fluorine grease K
Base oil	Mineral oil and synthetic hydrocarbon oil	Synthetic hydrocarbon oil	Fluorine oil
Thickener	Lithium soap	Diurea	PTFE
Kinematic viscosity (mm²/s, 40 °C)	32	95.8	270
Consistency	199	201	280 ± 15
Maximum operating temperature, °C	up to 70	up to 120	up to 200

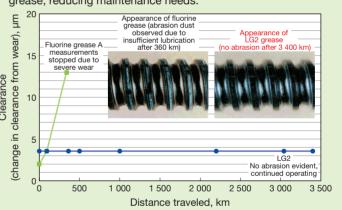

- LG2 and LGU are NSK-developed greases.
- LGU grease is free of metallic elements.

Comprehensive evaluation

Characteristics	LG2/LGU	Fluorine grease	Ordinary grease	
Low particle emission	0	O/A	△/×	
Torque	0	×	0/△	
Durability	0	Δ/X	0	
Rust prevention	0	∆/×	0	


Extremely low particle emissions

LG2/LGU greases offer stable low-dust characteristics over a longer period than fluorine greases.


Stable low-torque characteristics

LG2/LGU greases significantly reduce the burden on motors running at high speeds by achieving torque less than 20% that of fluorine greases (ball screws, at 500 min⁻¹).

Long life

LG2/LGU greases not only have the same durability as ordinary greases, they last over 10 times longer than flourine grease, reducing maintenance needs.

Superior rust prevention

LG2/LGU greases provide high reliability by preventing rust.

r idomio grodoo

Rusting

B15 NSK

3. NSK Lubricant E-DFO

In a world first, E-DFO lubricant forms a hydrocarbon oil film directly on the raceway surfaces of ball screws, linear guides, and rolling elements. In vacuum environments, this results in lower outgassing than with other lubricants like fluorine grease and lower particle emissions and longer life than with existing fluororesin coatings or solid lubricants.


Features

Better retains lubrication through low-vapor-pressure oil and adsorbent thin-lubricant film technology.

- Low particle emissions and superior outgassing compared to conventional fluororesin-coated and solid lubricant products
- Far more durable than fluororesin-coated products

 Low-vapor-pressure hydrocarbon oil coating that exhibits the properties of liquids and solids

• Flake-shaped PTFE powder increases the surface area for adhered lubricant, increasing lubricant retention.

Notes:

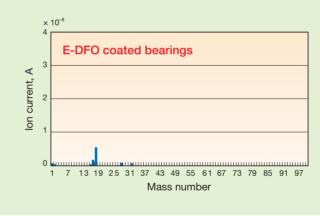
The E-DFO coating is a clear, low-vapor-pressure hydrocarbon-based, semi-dry coating that is viscous on the surface.

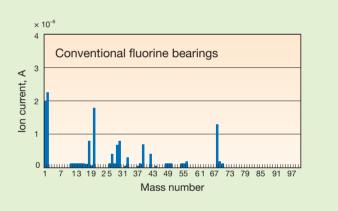
- 1. Handling: Open the package immediately before use in a clean space with the lowest possible humidity (less than 60%). Handle with cleanroom gloves; do not touch the product with bare hands.
- 2. Storage: If the sealed product is not used for a long period or is not used immediately after opening, store in a clean, dry container such as a desiccator or vacuum chamber to prevent rust and deterioration. Do not use slushing oil or anti-tarnish paper on the product.
- 3. Do not clean: E-DFO coated products do not require cleaning. Do not clean or wipe the coating on the rolling surface-this will directly affect the lubricating function.
- 4. Do not apply new lubricant: E-DFO coated ball screws and linear guides do not require additional lubricant. Do not use with the NSK K1 lubrication unit, as this will degrade E-DFO's lubricating properties.
- 5. Installation position: When using ball screws and linear guides vertically, use an oil receiver under the screw shafts and rails as the E-DFO coating may drip.

Comprehensive evaluation

Cleanroom **Environment**

		Performance		Compatible operating environment		
Lubricant	Durability	Particle Outgassing		Operating environment	Ball screws	Linear guides
E-DFO	0	0	0	Atmospheric pressure, vacuum	•	•
Fluororesin	Δ	Δ	0	Atmospheric pressure, vacuum	_	_
MoS ₂	0	△/○	0	Atmospheric pressure, vacuum	•	•
Commercially available fluorine grease	0	0	Δ	Atmospheric pressure, vacuum	•	•


○: Good △: Satisfactory

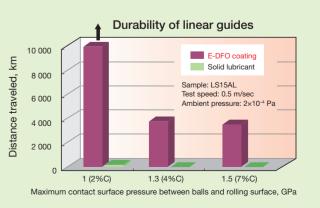

Low outgassing

Outgassing in high-temperature environments (example bearing measurements)

Outperforms conventional fluorine-coated bearings.

: Excellent

: Applicable


Long life

Durability of ball screws E-DFO coating extends the operating life of ball screws compared to fluororesin coating

Durability of linear guides

E-DFO coating extends the operating life of linear guides compared to solids lubricants.

B17 NSK

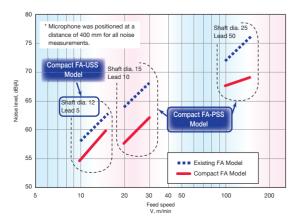
4. Compact FA-USS Model: High-Accuracy type for **Cleanrooms**

A precision Model ideal for semiconductor and flat panel display manufacturing equipment, inspection equipment, and other applications with clean needs.

Applications

Applications where cleanliness is required, such as semiconductor manufacturing equipment, flat panel display manufacturing equipment, inspection equipment etc.

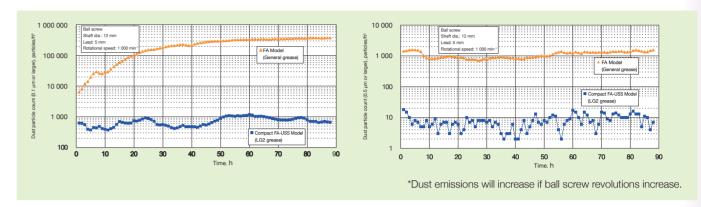
Specifications

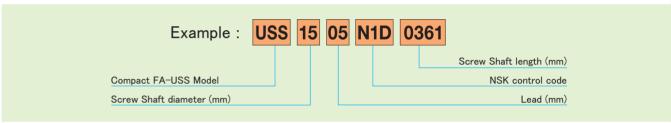

- · Accuracy grade : C3 (JIS)
- · Axial play: 0 (Oversize ball preload)

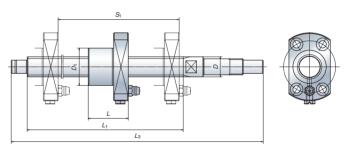
Features of the USS Model

- · High-speed, low-noise, and compact · Thanks to end-deflector recirculation system.
- · Low dust emissions······· NSK LG2 grease comes standard and reduces dust particles by 90% compared to general lithium grease.

Low-noise


Uses an end-deflector recirculation system to reduce noise by 6 dB compared to tube recirculation while also reducing vibration.


Low-dust emissions


Cleanroom

The USS Model with NSK LG2 Grease achieves a dust count 1/100 that of the FA Model with general lithiumbased grease.

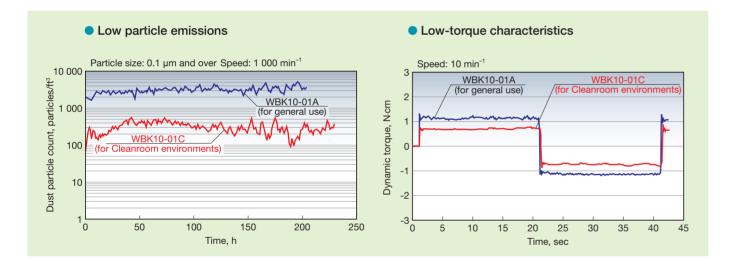
Compact FA-USS Model reference number

Specifications/Performance

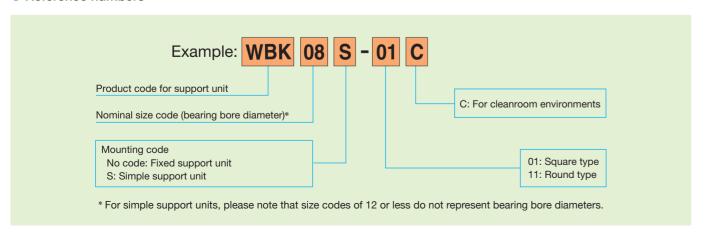
openioalener enormalies									Unit: mm																			
			Basic load	ratings (N)	Str	oke	Nut dim	ensions	Screw Shaft	dimensions	Lea	d accur	acy	Dynamic	D : 11													
Reference no.	Screw Shaft	Lead	Dynamic	Static	5	St	Diameter	Overall length	Threaded length	Shaft length	Travel compensation	Deviation	Variation	preload torque *1	Permissible rotational speed													
	dia.	1	Ca	C _{0a}	Nominal	Max.	D1	L	<i>L</i> ₁	L ₃	Т	ep	V _u	(N·cm)	(min ⁻¹) * ² Fixed-Simple													
USS1005N1D0221					100	133			162	221		0.010	0.008	0.2 ~ 1.8														
USS1005N1D0321	10		3 420	4 840	200	233	23	29	262	321		0.012	0.008	0.2 ~ 2.0														
USS1005N1D0521					400	433			462	521		0.015	0.010	0.2 ~ 3.0														
USS1205N1D0221		5	_	_	E													100	130			160	221		0.010	0.008	0.2 ~ 1.8	
USS1205N1D0321	12						3 750	5 810	200	230	24	30	260	321	0	0.012	0.008	0.2 ~ 2.0	5 000									
USS1205N1D0621					500	530			560	621	U	0.016	0.012	0.2 ~ 3.0														
USS1505N1D0261					100	159			189	261		0.010	0.008	0.2 ~ 5.0														
USS1505N1D0361	15	5		6 410	10 100	200	259	28	30	289	361		0.012	0.008	0.2 ~ 5.0													
USS1505N1D0561	15		0410	10 100	400	459		30	489	561		0.015	0.010	0.2 ~ 6.0														
USS1505N1D0761					600	653			689	761		0.018	0.013	0.2 ~ 6.0	4 130													

^{*1.} Indicates ball screw preload control value. Approximately 0.5 N·cm of torque is added due to thin plastic seals.

··Operating temp. range: 0 − 70 °C


^{*2.} Contact NSK if permissible rotational speed will be exceeded.

5. Support Units for Cleanroom Environments


Support units for cleanroom environments come equipped with all required parts such as locknuts so that they can be mounted as is with NSK ball screws with machined shaft ends, (Refer to the tables for details on ball screws with unfinished shaft ends.)

Features of Support Units for Cleanroom Environments

- Extremely low particle emissions Uses LG2 grease to achieve proven low particle emissions 1/10 those of general support units.
- 50% compared to general units.
- High rust prevention ······· Adopts Low-Temperature chrome plating for the housing surfaces and stainless steel for small parts

Reference numbers

Structure

- Two types are available: a square floor-mounted type for surface mounting and a round type for fitting into the body.
- While the square type consists of a fixed support side unit (motor side) for the ball screw shaft and the opposing simple support side, the round type has no simple support side housing.

	43		5	6 7
	F	ixed support side	Simp	e support side
	Part No.	Name of part	Part No.	Name of part
	1	Bearing housing	⑤	Bearing housing
e	2	Spacer	6	Bearing
	3	Locknut	7	Snap ring
tor				

Set screw

with set piece

• Bearing type, grease, housing surface treatment, and small parts material

Bearing, grease	Surface treatment	Set screw and snap ring material
Special bearings, LG2	Low-Temperature chrome plating	Stainless steel

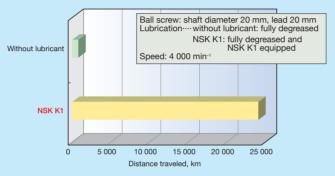
Specifications

	Fixed suppor	Simple	e support side s	support unit			
		xial direction	1	Maximum	Cimpi		Radial direction
Reference No.	Basic dynamic load rating $C_a(N)$	Load limit (N)	Stiffness (N/µm)	starting torque (N·cm)	Reference No.	Bearing Reference No.	Basic dynamic load rating C (N)
WBK08-01C (square)	2.100	1 100	36	0.52	WBK08S-01C	606VV	2 260
WBK08-11C (round)	3 100	1 100	30	0.52	WBR003-01C	000 V V	2 200
WBK10-01C (square)	4 250	1.004	1 364 50	1.1	WBK10S-01C	608VV	3 300
WBK10-11C (round)	4 200	1 304	30	1.1	WBI(100-010	000 V	3 300
WBK12-01C (square)	4 700	2 443	57	1.2	WBK12S-01C	6000VV	4 550
WBK12-11C (round)	4 700	2 440	37	1.2		000000	4 330
WBK15-01C (square)	5 100	0.757	62	1.0	WBK15S-01C	6002VV	5 600
WBK15-11C (round)	5 100	2 757 63	03	1.3	WBK15S-01C		5 000

6. NSK K1™/NSK K1-L™ Lubrication Unit

(1) Ball screws equipped with NSK K1[™] and linear guides equipped with NSK K1[™]/NSK K1-L[™] for general industry

Specifications, Operating Instructions, and Technical Data for SPACEA™ Series Ball Screws and NSK Linear Guides


NSK has developed specialized lubrication units for ball screws and linear guides. Ball screws with NSK K1 and linear quides with NSK K1/NSK K1-L offer maintenance-free performance over a long period. (See pages B25-26 for details on NSK K1 in linear guides for food processing machinery/medical devices.)

Features of Ball Screws with NSK K1

Durability tests without lubricant

A ball screw without lubricant was damaged after operating over 8.6 km, but the ball screw equipped with NSK K1 operated for more than 20 000 km.

Notes at bottom page also apply to ball screws with NSK K1.

Features of Linear Guides with NSK K1

- The NSK K1 lubrication unit greatly enhances lubrication in NSK Linear Guides.
- A newly developed porous synthetic resin contains ample lubricant to ensure extended maintenance-free performance
- Easy installation: mounts to the inside of the standard-end seal

NSK K1-L for improved performance

- NSK K1-L improves on the original NSK K1 with a higher capacity supply of lubricating oil, enabling even longer maintenance-free operation.
- NSK K1-L is applied to NH, VH, NS, and HS models.

Notes:

To maintain optimal performance of NSK K1/NSK K1-L note the

1. Operating temperatures: Maximum operating temperature: 50°C Maximum momentary operating temperature:

2. Avoid contact with: Organic solvents with degreasing properties, such as hexane and immersion in white

kerosene thinner or anti-corrosive oil (containing white kerosene)

Performance

Durability test without lubricant

A linear guide without lubricant was damaged after a short period, but the K1-equipped linear guide covered a distance exceeding 50 000 km.

Linear guide: LH30AN (preload Z1)

Lubrication---- without lubricant: fully degreased
NSK K1: fully degreased and NSK K1 equipped

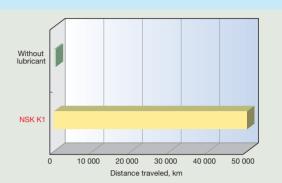
Water-immersion test

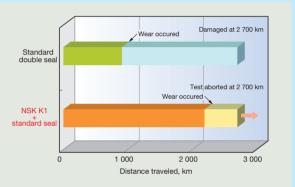
In a water-immersion test run once a week for 24 hour intervals, the ball groove of a linear guide fitted with standard double seals quickly showed wear and damage at 2 700 km. By comparison, the linear guide equipped with NSK K1 showed only 1/3 as much wear, confirming significant lubricating efficacy.

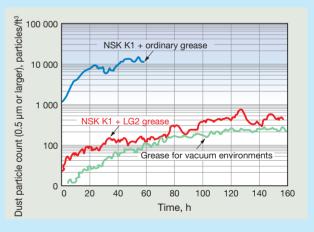
Linear guide: LS30 stainless steel (preload Z1)

Water immersion: Run once a week for 24 hours, fully immersed in water Lubrication: Fully grease-packed for food processing machinery

Dust generation


The combination of NSK K1 and LG2/LGU "clean" greases (low-particle-emission grease) produced no more dust than conventional grease for vacuum environments.


Conditions


Linear guide: LS20 Speed: 36 m/min

Notes: Compatibility of NSK K1 with oils and chemicals

The table on the right shows test results after immersing NSK K1 in chemicals and oils at 40° C. NSK K1 was found to be stable when in contact with grease and cutting lubricants, and use in combination with these substances presents no problems. However, exposure to chemicals with degreasing properties, such as white kerosene and hexane, quickly removed oil content from the surface of the seals, suggesting that the lubricating effect may deteriorate under these conditions.

Chemicals/Oil	Compatibility
Cutting lubricants (water-based, oil-based)	А
Grease (mineral oil-based, ester-based)	А
Rust preventives (without solvents)	А
Rust preventives (with solvents)	В
White kerosene	В
Hexane	С
A: Compatible B: Use sparingly, for brief periods only	C: Incompatible

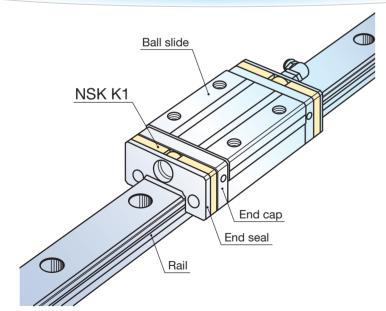
B23 NSK

6. "NSK K1™" Lubrication Unit

(2) Linear guides equipped with NSK K1[™] for food processing and medical equipment

Thanks to a new material seal, NSK K1 for food processing and medical equipment is safe and FDA-compliant. In NSK K1, a newly developed, porous synthetic resin provides continuous and abundant lubricant. The unit is also easy to install inside standard end seals made of rubber. After success in general industry (see Pages B23-B24), we utilized special materials to allow use in food processing and medical equipment.

Features


Safe to handle

Uses highly safe materials that are compliant with the US Food and Drug Administration's (FDA) hygiene standards for food additives

Environmentally sound

A newly developed porous synthetic resin provides a controlled supply of lubricant, preventing the spread of oil in sanitary environments

Featuring reliable FDA-compliant material

To maintain optimal performance of NSK K1 in linear guides, note the following:

1. Operating temperatures: Maximum operating temperature: 50 °C

Maximum momentary operating temperature: 80 °C

2. Avoid contact with: Organic solvent with degreasing properties, such as hexane and thinner Immersion in white kerosene or anti-corrosive oil (with white kerosene ingredients)

100 µm

Magnification of NSK K1

Portion containing high proportion of polyolefin

Polyolefin is used for packaging food in supermarkets, replacing dioxingenerating vinyl chloride.

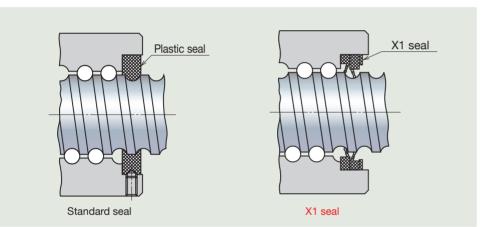
Portion containing high proportion of lubricating oil

7. NSK High-Performance Seals

Ball screws and linear guides face tough environments contaminated by wood particles, rubber fragments, graphite/ceramic powders, welding spatter, and more,

Recently, dust resistance has become increasingly significant as covers are eliminated to reduce costs and make equipment more compact.

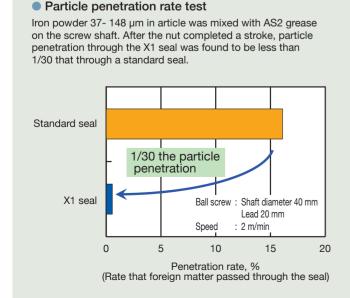
Though our conventional seals resist dust, NSK has developed high-performance seals with even better resistance to dust to respond to this need.

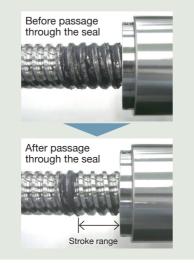


 Applications: Woodworking machinery (photo at right), tire buffing machinery, welding lines, graphite processing machinery, laser machinery

Features of Ball Screws Equipped with X1 Seals

- High dust-resistance A specialized seal design improves sealing performance to better resist contaminants and increase durability.
- Superior grease retention. Ball screws with X1 seals have a double seal structure combining a dust-resistant seal and grease-retaining seal to improve grease retention.
- Low torque design An optimized seal shape and low-friction materials achieve low torque and low heat

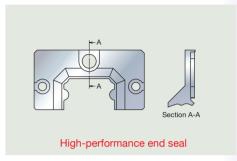



Wood chips

Note: The nut with an X1 seal is slightly longer than the standard.

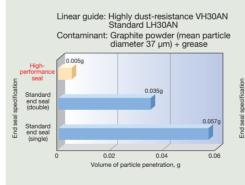
Performance

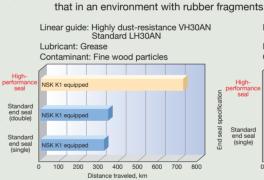
Appearance after particle penetration rate test All contaminants adhering to the screw shaft are swept away after passage through the X1 seal.

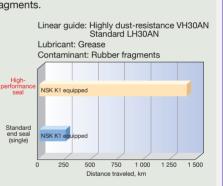


Features High-Performance Seals for Linear Guides

- High dust-resistance Sealed with three lips that extend from the main body of the seal


Note: Linear guides with high-performance seals come standard with the NSK K1-L lubrication unit. The seals will jut out slightly, making slide length slightly longer than with standard seals. See the table below for details.

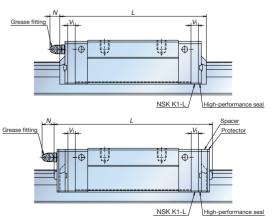

Long life


Performance

High dust-resistance

Particle penetration through the high-performance seal is less than 1/10 that through a standard end seal (single).

Specifications

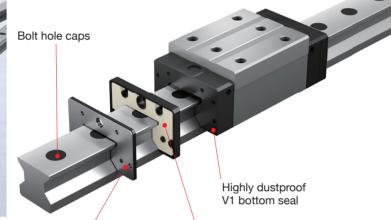

			Unit: mn
1	Model No.	Ball slide length L	Grease fitting extrusion N
VH15	AN/EM BN/GM	70.6 (77) 89.6 (96)	1 (8.2)
VH20	AN/EM BN/GM	87.4 (94.2) 109.4 (116.2)	11.1 (12.3)
VH25	AL/AN/EM BL/BN/GM	97 (104.4) 125 (132.4)	9.6 (12.9)
VH30	AL/AN EM BL/BN/GM	104.4 (114.8) 117.4 (127.8) 143.4 (153.8)	11.4 (14.2)
VH35	AL/AN/EM BL/BN/GM	128.8 (139.2) 162.8 (173.2)	10.9 (13.7)
VH45	AL/AN/EM BL/BN/GM	161.4 (174.2) 193.4 (206.2)	12.5 (14.1)
VH55	AL/AN/EM BL/BN/GM	185.4 (198.2) 223.4 (236.2)	12.5 (14.1)

Dimensions in parentheses apply when equipped with a protector.

Dimensions of a linear guide equipped with high-performance seals and NSK K1-L

Improved resistance to contaminants achieves durability twice that of

standard seals in an environment with fine wood particles and over five times

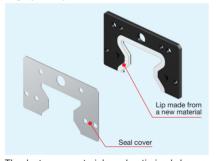

Data shown reflect test results. NSK offers no warranty for seal performance in actual machinery. Since performance is affected by the usage environment and lubrication conditions, we highly recommend using covers or other measures to protect machinery from contaminants.

Features of Roller Guides Equipped with Highly Dustproof V1 Seals and V1 Bottom Seals

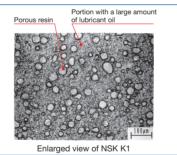

- Excellent for machine tools Built on the RA Series, with a proven track record in the industry.
- Abrasion resistance ······· Uses the V1 highly dustproof seal made of new materials and a shape optimized to resist dust. A bottom V1 seal is also available for some models (RA35, RA45, RA55, RA65).

Roller guides equipped with highly dustproof V1 Seal

Bolt hole caps


These caps prevent foreign matter from building up inside the rail mounting holes. These are standard parts.

Rail cover (optional)


Covers the top surface of the rail and prevents foreign matter from entering the rail mounting

Highly dustproof V1 seal

Thanks to new materials and optimized shapes, V1 seals achieve better abrasion resistance and prevent foreign matter from entering the slide for long periods.

NSK K1[™] lubrication unit

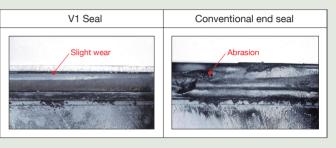
Made of porous synthetic resin containing a large amount of lubrication oil. When moved to contact the raceway surface, NSK K1 supplies fresh lubricating oil.

Performance

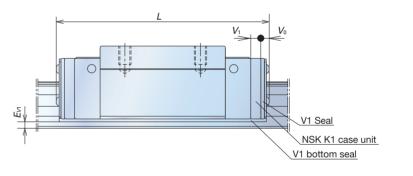
Abrasion resistance

Highly abrasion-resistant material is used for the seal lip.

Taper abrasion test (ASTMD1044)


Load: 9.8 N Average speed: 29.7 m/min. Approx. 40 km/day

Existing material


The durability of the seal lip has been greatly improved by adopting new materials and optimizing the seal lip shape.

Durability test under extreme conditions - no lubrication Test sample: BA35

Lubrication: No lubrication (on the seal) Travel speed: 30 m/min Travel distance: 40 km

Dimensions

Unit: mm

							OTHE . ITHIII
Model No.	Roller slide length	Roller slide type	Standard roller slide length L	Roller slide length equipped with V1 seal and NSK K1 L	Slide bottom face height equipped with V1 bottom seal E_{V1}	Thickness of V1 seal V_0	Thickness of K1 case unit
RA25	Standard	AN, AL, EM	97.5	111.3		5.1	5
na25	Long	BN, BL, GM	115.5	129.3	-	5.1	5
RA30	Standard	AN, AL, EM	110.8	126.8		5.4	6
NASU	Long	BN, BL, GM	135.4	151.4	_	5.4	0
RA35	Standard	AN, AL, EM	123.8	140.8	min 3.7	5.4	6.5
HASS	Long	BN, BL, GM	152	169	111111 3.7	5.4	0.5
RA45	Standard	AN, AL, EM	154	173.2	min 5.2		7
NA45	Long	BN, BL, GM	190	209.2	111111 5.2	6.6	,
RA55	Standard	AN, AL, EM	184	203.2	min 6.2	6.6	7
HASS	Long	BN, BL, GM	234	253.2	111111 0.2	0.0	1
RA65	Standard	AN, EM	228.4	251.2	min 10.2	8.0	7.5
COAC	Long	BN, GM	302.5	325.3	111111 10.2	8.9	7.5

Since sealing (resistance to foreign matter) is affected by usage and the lubrication environment, please conduct an evaluation test for your particular application

8. Ball Screws and NSK Linear Guides for **High-Temperature Environments**

NSK has developed heat-resistant ball screws and linear guides in response to high-temperate operating environments. Our products serve a variety of high-temperature applications, such as semiconductor and flat panel display production, glassware manufacturing, and automobile assembly lines.

Features Linear Guides for High-Temperatures

 Maximum operating temperature: 150 °C; maximum momentary temperature: approximately 200 °C (Standard models: 80 °C; maximum momentary temperature: approximately 100 °C)

 All-stainless-steel specification:
 All-stainless-steel products are excellent at resisting not only heat, but also corrosion and chemicals.

These can also be used in vacuum environments.

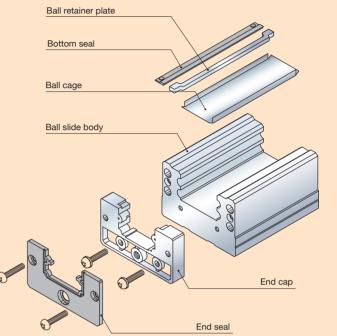
Applicable models and sizes

Models and model numbers not listed are also available upon request.

Analizatela Madal	Size codes*						
Applicable Model	Standard material specification	All-stainless-steel specification (except for seals)					
NH (high load capacity/aligning)	20, 25, 30, 35, 45, 55	20, 25, 30					
NS (compact low type)	15, 20, 25, 30	15, 20, 25, 30					
LW (broad type)	17, 21, 27	_					
LU (miniature)	09, 12, 15	09, 12, 15					
LE (miniature broad type)	_	09, 12, 15					

Note: *Example of a basic code

Size code.....Indicates the rail width or assembly height.


For details, see our "Precision Machine Components" catalog (No. E3162)

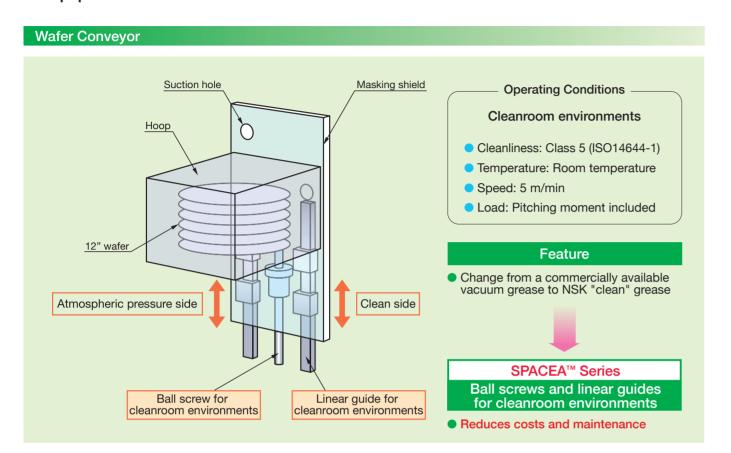
Structure

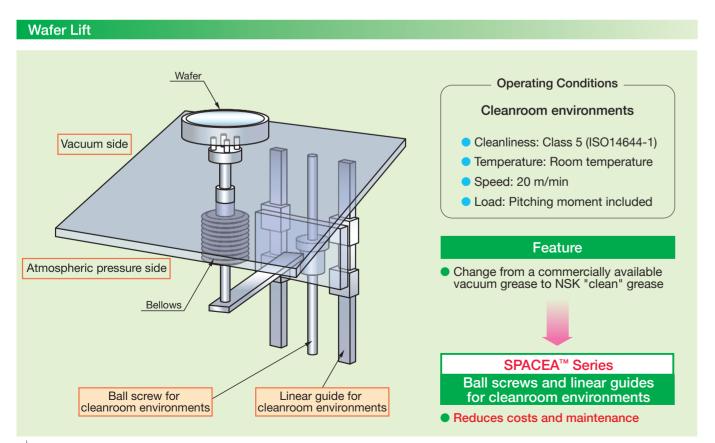
Special high-carbon steel with excellent rolling durability or martensite stainless steel with high cleanliness are used for the rails, ball slide, and balls. A heat- and chemical-resistant fluororubber is used for the seal, while corrosion-resistant austenite stainless steel is used for the remaining components.

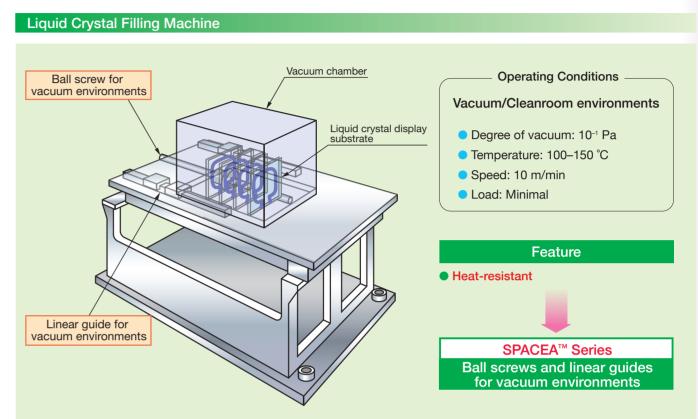
Materials used for components

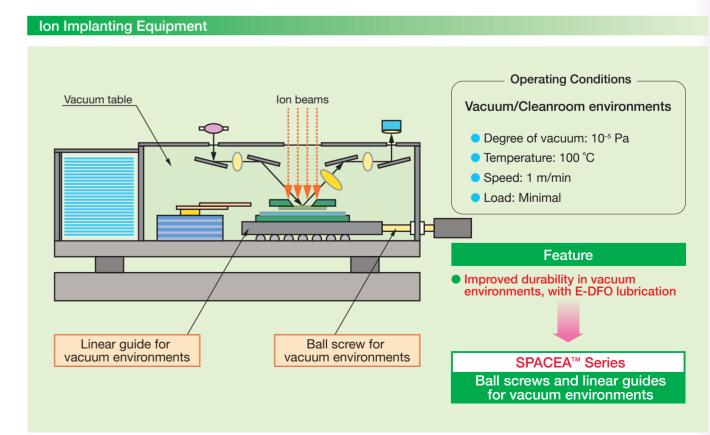
Heat-resistant linear guides

Linear guide component	Material specification
Rail, ball slide	Martensite stainless steel
Ball	SUS440C
End cap, recirculation components of cage, small screws	Austenite stainless steel
Seal	Fluororubber, etc.


Features of Ball Screws for High Temperatures


Maximum operating temperature: 150 °C maximum momentary temperature: approximately 200 °C

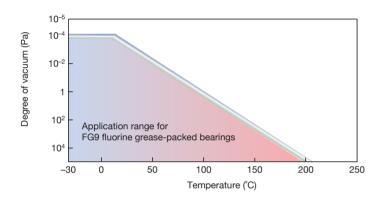

Materials used for components


Ball screw component	Material specification
Shaft, nut	Martensite stainless steel
Ball	SUS440C
Recirculation components	Austenite stainless steel

1. Semiconductor Manufacturing Equipment/Flat Panel Display Manufacturing Equipment

This section provides descriptions of the physical properties of lubricants and materials used in SPACEA™ Series bearings, ball screws, and linear guides. Reference values for physical characteristics are provided for your convenience.

Please use the "Specification Inquiry" page at the back of catalog when contacting NSK. We will do everything possible to find a SPACEA product that suits your needs.


Physical Properties	of Materials		C3-0	C11
---------------------	--------------	--	------	-----

- 1. Properties of SPACEA[™] Series Greases
- 2. Characteristics of Representative Solid Lubricants
- 3. Characteristics of Metallic Materials
- 4. Characteristics of Ceramic Materials
- 5. Physical Properties of Plastic Materials
- 6. Properties of Commercially Available Fluorine Lubricants (Krytox)
- 7. Properties of Commercially Available Fluorine Lubricants (Fomblin oil, Klübertemp / Klüberalfa grease)
- 8. Properties of Commercially Available Fluorine Lubricants (Barrierta, NOXLUB, Demnum)
- 9. Specification Inquiry for SPACEA Series Bearings

1. Properties of SPACEA™ Series Greases

Operating environment	Grease	Atmospheric pressure, vacuum	Maximum operating temperature °C	Cleanliness(1)	Base oil	Thickener	Kinematic viscosity mm²/s, 40 °C
Atmospheric pressure	NS7	Atmospheric pressure	100	_	Polyol ester oil + Diester oil	Lithium soap	26
Atmospheric pressure,	LG2	Atmospheric	70	0	Mineral oil and synthetic hydrocarbon oil	Lithium soap	32
Clearifoon	LGU	pressure	120	Class 5-6 (100-1 000)	Synthetic hydrocarbon oil	Diurea	96
From atmospheric pressure up to vacuum, Cleanroom	FG9	See the applicati Grease-Packed	on range for FG9 Bearings below.		Fluorine oil	PTFE	200
Atmospheric pressure, high-temperature	KPM	Atmospheric pressure	230	_	Fluorine oil	PTFE	420
Atmospheric pressure,	e. RLS Atmosph		120	_	Synthetic hydrocarbon oil	Aluminum alloy soap	150
sanitary	BLS	pressure	200	_	Fluorine oil	PTFE	415

Note (1) Cleanliness is indicated per ISO 14644-1 (values in parentheses refer to former US FED-STD-209E Classes). Cleanliness may vary depending on operating conditions, surrounding structures, and other factors.

2. Characteristics of Representative Solid Lubricants

Zi Onaraotonot	00 01	. lopi oo	ontail o	ona Lai	Jiioaiico					
	Relative	Molecular	Crystal	Electric	Maximum or temperati	perating ire °C	Coefficient	of friction	Particle	
Solid lubricant	density g/cm³	mass	structure	resistance Ω · cm	Atmospheric pressure	Vacuum	Atmospheric pressure	Vacuum	emissions	Outgassing
Molybdenum disulfide MoS ₂	4.8	160.07	Hexagonal crystal system	8.33 (-60 °C)	350	650	0.006-0.25	0.001–0.2	Δ	0
Tungsten disulfide WS ₂ 7.		248.02	Hexagonal crystal system	0.40 (92 °C)	425	750	0.05-0.28	0.001–0.2	Δ	0
Graphite C	2.24	12.011	Hexagonal crystal system	2.6 × 10⁻³	550	_	0.05-0.3	0.4–1.0	Δ	0
Polytetrafluoroethylene PTFE	2.2	_	Long-chain	1014	260	260	0.04-0.2	0.04-0.2	0	Δ
Polyimide	1.4	_	Long-chain	_	300	300	0.12	0.10	0	Δ
Gold Au	19.3	196.97	Face-centered cubic	2.2 × 10 ⁻⁶	200	200	0.2-0.5	-	Δ	0
Silver Ag	10.5	107.87	Face-centered cubic	1.6 × 10 ⁻⁶	_	600	_	0.2-0.3	Δ	0
Lead Pb	11.3	207.2	Face-centered cubic	2.08 × 10 ⁻⁶	100	350	0.05-0.5	0.05-0.5	Δ	0

: Excellent

○: Good △: Satisfactory

3. Characteristics of Metallic Materials

Metallic material	Thermal expansion coefficient × 10-6 / °C	Young's modulus GPa	Hardness ⁽¹⁾ HV	Relative permeability	
Bearing steel SUJ2	12.5	208	700–800		
Highly corrosion-resistant stainless steel ES1	10.8	206	650.750		
Martensite stainless steel SUS440C	10.1	200	650–750	Ferromagnetic	
Highly corrosion-resistant, high hardness stainless steel ESZ	10.6	202	580–650		
Precipitation-hardened stainless steel SUS630	10.8	200	390		
Austenite stainless steel SUS304	16.3	193	150	1.04 or less	

Note (1) Converted to HV (Vickers hardness) for comparison

4. Characteristics of Ceramic Materials

`			
7)		Excel	lont
))	٠.		ICIIL

○: Good △: Satisfactory ×: Unsatisfactory

Item	Unit	Silicon nitride ceramics	Oxide-based ceramics	Bearing steel
Density	g/cm³	3.23	5.9	7.8
Young's modulus	GPa	330	210	208
Fracture toughness	MPa ⋅ m ^{1/2}	6	7.5	18
Hardness (HV)	_	1 500	1 300	700
Thermal expansion coefficient	× 10 ⁻⁶ / °C	2.8	10.5	12.5
Thermal conductivity	W/m·k	31	3	50
Bending strength	MPa	900	1 100	≥2 500
Rotating capability in water	_	0	0	×
Rotating capability in acid solvents	_	Δ	0	×

5. Physical Properties of Plastic Materials

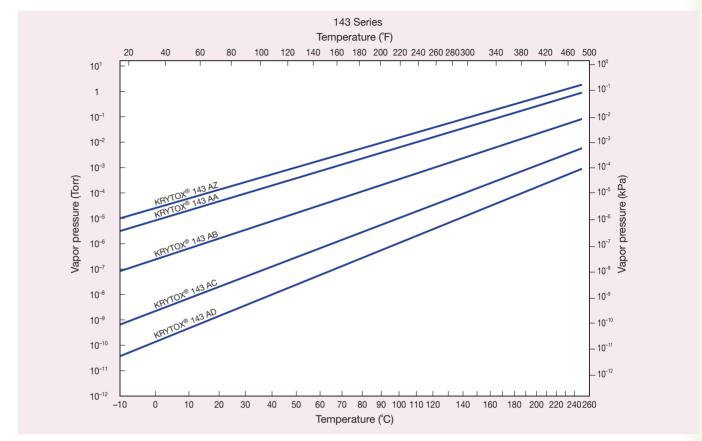
Plastic materials used for the cages of bearings for special environments are generally reinforced with carbon fibers, solid lubricants such as MoS₂, and wear-resistant additives.

Plastic	Classification(1)	Elasticity coefficient GPa	Strength GPa	Density g/cm³	Tm ⁽²⁾	Heat distortion temperature ⁽³⁾ °C
Polyphenylene sulfide (PPS)	M, C	1.4	0.155	1.64	285	>260
Polyetheretherketone (PEEK)	M, C	3.9	0.1	1.3	335	152
Heat reversible polyimide (TPI)	M, C	2.94	0.092	1.33	388	238
Tetrafluoroethylene-ethylene copolymer (ETFE)	M, C	0.88-1.37	0.04-0.046	1.7–1.76	260	74 (104)
Polyvinylidene fluoride (PVDF)	M, C	1.6	0.045	1.76	170	90 (150)
Polytetrafluoroethylene (PTFE)	С	0.40	0.028	2.16	327	- (120)
Polyamide (nylon 6-6)	M, C	3.0	0.08	1.14	264	60 (180)
Nylon 4-6	M, C	3.14	0.1	1.18	295	220

Notes (1) Classification M: Moldable C: Crystalline
(2) Tm: Melting point
(3) Heat distortion temperature values in parentheses are at 454 kPa, all other values are at 181 MPa.

Appendices

6. Properties of Commercially Available Fluorine Lubricants (Krytox)


Krytox oil (Chemours)

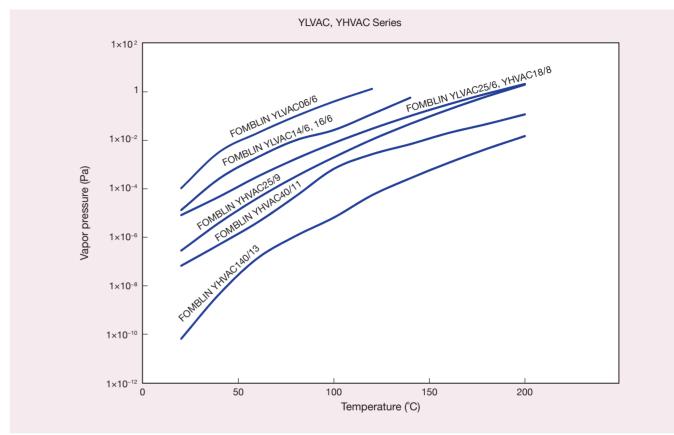
Prod	duct	Average molecular		Kinemat m	tic visco nm²/s	osity	Viscosity index	Pour point °C		(Knudser	ressure n number) a		Evaporation wt % (Temperature,	Density g/cm³	Range of operating temperatures
		weight	20 °C	38 °C	50 °C	100 °C	Писх	Ŭ	20 °C	38 °C	50 °C	260 °C	22 hours)	(0 °C)	(°C)
	AZ	2 060	60	24.7	_	4.1	60	-55	_	5×10⁻⁵	_	0.2	18 (149 °C)	_	_
	AA	2 210	88	35	_	5.3	96	-50	_	1×10⁻⁵	_	0.1	15 (1)	_	_
143 Series	AB	3 800	240	86	_	10.2	113	-40	_	7×10 ⁻⁷	_	4×10 ⁻³	1.9 (1)	_	_
001100	AC	5 940	800	270	_	25.4	134	-35	_	1×10 ⁻⁸	_	3×10 ⁻⁴	4 (260 °C)	_	_
	AD	7 480	1 540	502	_	42.4	146	-30	_	8×10 ⁻¹⁰	_	4×10 ⁻⁵	2 (260 °C)	_	_
	1506	2 160	60	_	15.5	4.1	_	-60	4×10 ⁻⁷	_	1×10⁻⁵	_	6.5 (121 °C)	1.88	_
1500 Series	1514	2 840	140	-	32	7.2	_	-54	2×10 ⁻⁷	_	3×10⁻6	_	1.3 (1)	1.89	_
0000	1525	3 470	250	-	52	10.6	_	-48	1×10 ⁻⁷	_	1×10 ⁻⁶	-	0.6 (1)	1.9	_
1600 Series	16256	9 400	2 560	_	437	64.6	_	-15	3×10 ⁻¹⁴	_	2×10 ⁻¹²	_	0.2 (1)	1.92	_
	100	_	12.4	_	_	_	_	<-70	_	_	_	_	90 (121 °C)	_	-70/66
	101	_	17.4	_	_	2	_	<-70	_	_	_	_	75 (1)	_	-70/104
	102	_	38	_	_	3	29	<-63	_	_	_	_	35 (1)	_	-63/132
GPL	103	_	82	-	_	5	92	-60	_	_	_	_	7 (1)	_	-60/154
Series	104	_	177	_	_	8.4	111	-51	_	_	_	_	3 (1)	_	-51/179
_	105	_	522	_	_	18	124	-36	_	_	_	_	7 (204 °C)	_	-36/204
	106	_	822	_	_	25	134	-36	_	_	_	_	<3 (1)	_	-36/260
	107	_	1 535	_	_	42	145	-30	_	_	_	_	<1 (1)	_	-30/288

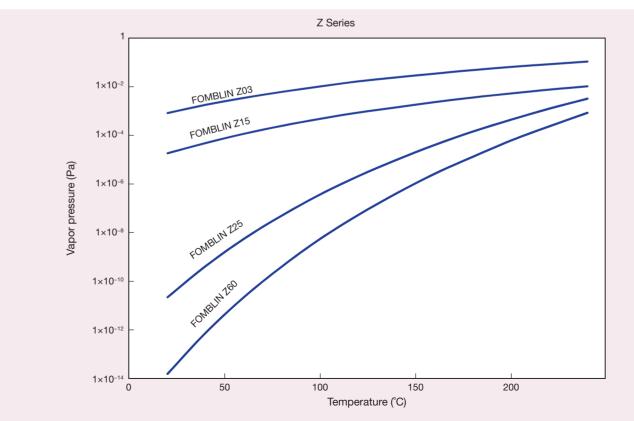
Krytox grease

Product	Base oil	Kinematic viscosity mm²/s	Thickener	Consistency NLGI No.		ressure number) Pa	Oil separation rate wt %	wt %	Density g/cm³	Additive				
		(38 °C)		NEGINO.	38 °C	260 °C	(204 °C, 30h)	(204 °C, 6.5h)	(25 °C)					
240AZ	143AZ	24.7			4×10 ⁻⁴	1.5	6	18 (149 °C)	_	None				
240AA	143AA	35			1×10 ⁻⁴	0.8	5	15 (149 °C)	_	1				
240AB	143AB	86	PTFE	2	5×10⁻6	3×10 ⁻²	4	1.9 (149 °C)	_	1				
240AC	143AC	270						8×10⁻8	2×10⁻³	3	4 (260 °C)	_	1	
240AD	143AD	502				6×10 ⁻⁹	3×10 ⁻⁴	3	2 (260 °C)	_	1			
250AC	143AC	270	PTFE	PTFE	PTFE		8×10 ⁻⁸	2×10⁻³	3	4 (260 °C)	_	MoS ₂		
280AC	143AC	270				PTFE	PTFE	2	1	1	3	4 (260 °C)	_	Anti-rust agent
283AC	143AC	270						FILE	2	1	1	3	4 (260 °C)	_
283AD	143AD	502			6×10 ⁻⁹	3×10 ⁻⁴	3	2 (260 °C)	_	Anti-rust agent				
LVP	16256	740 (40 °C)	PTFE	2	1×10 ⁻¹³ (20 °C)	1×10⁻⁵ (200 °C)	_	0.2 (121 °C)	1.94	None				
GPL204	GPL104	60 (40 °C)			_	_	5	3 (121 °C)	_	None				
GPL224	GPL104	60 (40 °C)	PTFE	2	_	_	5	3 (121 °C)	_	Anti-rust agent				
GPL207	GPL107	450 (40 °C)		PIFE	PIFE	PIFE	2	_	_	4	<1 (204 °C)	_	None	
GPL227	GPL107	450 (40 °C)						_	_	4	<1 (204 °C)	_	Anti-rust agent	

Vapor pressure of Krytox oil

7. Properties of Commercially Available Fluorine Lubricants (Fomblin oil, Klübertemp / Klüberalfa Grease)


Fomblin oil (Solvay Specialty Polymers)

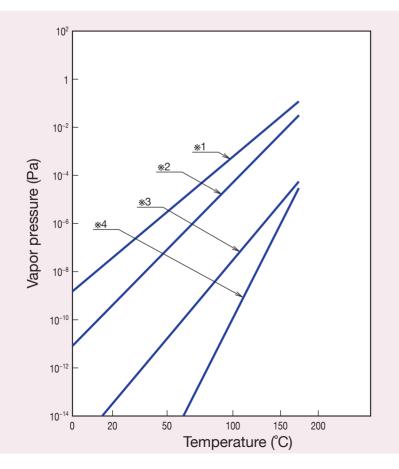

Product		Average molecular	Kinematic viscosity mm²/s		Viscosity Pour point index		Vapor pressure (Knudsen number) Pa		Evaporation wt %	Density g/cm³	
		weight	20 °C	40 °C	100 ℃	IIIUGA		20 °C	100 ℃	(Temperature, 22 hours)	(20 °C)
	Y04	1 500	38	15	3.2	60	-58	_	_	9 (120 °C)	1.87
	Y06	1 800	60	22	3.9	70	-50	_	_	6 (120 °C)	1.88
Y Series	Y25	3 200	250	80	10	108	-35	_	_	15 (204 °C)	1.90
Series	Y45	4 100	470	147	16	117	-30	_	_	1.7 (204 °C)	1.91
	YR	6 250	1 200	345	33	135	-25	_	_	1.2 (204 °C)	1.91
	06/6	_	64	_	_	_	-50	≤1.1 × 10 ⁻⁴	≤4.0 × 10 ⁻¹	_	1.88
YLVAC	14/6	_	148	_	_	_	-45	≤1.3 × 10 ⁻⁵	≤2.7 × 10 ⁻²	_	1.89
Series	16/6	_	168	_	_	_	-45	≤2.7 × 10 ⁻⁶	≤2.7 × 10 ⁻²	_	1.90
	25/6	_	276	_	_	_	-35	≤8.0 × 10 ⁻⁶	≤8.0 × 10 ⁻³	_	1.90
	18/8	_	190	_	9	_	-42	≤2.6 × 10 ⁻⁶	≤2.6 × 10 ⁻²	_	1.89
YHVAC	25/9	_	285	_	12	_	-35	≤2.6 × 10 ⁻⁷	≤2.6 × 10 ⁻³	_	1.90
Series	40/11	_	474	_	_	_	-32	≤6.6 × 10 ⁻⁸	≤6.6 × 10 ⁻⁴	_	1.91
	140/13	_	1 508	_	_	_	-23	≤6.5 × 10 ⁻¹¹	≤6.5 × 10 ⁻⁶	_	1.92
	Z03	4 000	30	18	5.6	317	-90	_	_	6.0 (149 °C)	1.82
Z	Z15	8 000	160	92	28	334	-80	-	_	1.2 (204 °C)	1.84
Series	Z25	9 500	263	157	49	358	-75	_	-	0.4 (204 °C)	1.85
	Z60	13 000	600	355	98	360	-63	_	_	0.2 (204 °C)	1.85

Klübertemp / Klüberalfa grease (NOK Klüber)

Product		Thickener	Consistency NLGI No.	Oil separation Rate wt % (204 °C, 30h)	Evaporation wt % (204 °C, 22h)	Density g/cm³ (20 °C)	Additive	Working Temperature Range °C
	GR OT20N		2	_	_	1.90	Anti-rust agent (solid)	-50/70
VIüb ortomo	GR UT18N	PTFE	2	_	_	1.90	Anti-rust agent (solid)	-30/200
Klübertemp	GR RT15N		2	≤12	≤3	1.90	Anti-rust agent (solid)	-20/250
	GR RT2		2	≤12	≤3	1.90	Anti-rust agent (solid)	-20/250
	GR YVAC1		1	≤14	≤1	1.90	None	-20/250
Klüberalfa	GR YVAC2	PTFE	2	≤12	≤1	1.90	None	-20/250
	GR YVAC3		3	≤10	≤1	1.90	None	-20/250

Vapor pressure of Fomblin oil

8. Properties of Commercially Available Fluorine Lubricants (Barrierta, NOXLUB, Demnum)

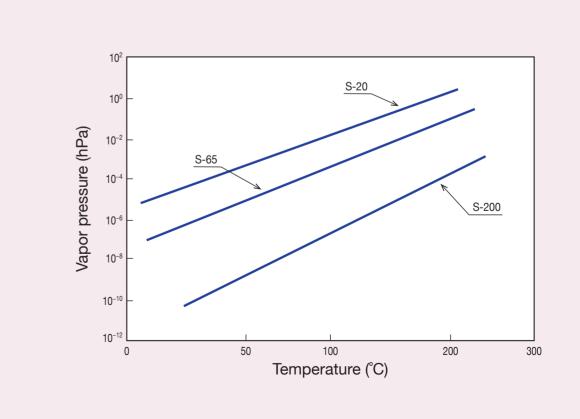

Barrierta oil (NOK Klüber)

I Series	Average		c viscosity n²/s	Viscosity	Pour point	Density g/cm ³	
	molecular weight	20 °C	40 °C	index		g/cm³ (20 °C)	
IEL FLUID	3 500	310	98	≥100	≤–45	1.90	
IMI FLUID	4 500	670	205	≥120	≤–30	1.90	
IS FLUID	7 500	1 400	425	≥120	≤–30	1.91	

Barrierta grease (NOK Klüber)

Product	Base oil	Kinematic viscosity mm²/s (40 °C)	Thickener	Consistency NLGI No.	Vapor pressure (Knudsen number) (20 °C)	Oil separation rate wt % (100 °C, 24h)	Evaporation wt % (99 °C, 22h)	Density g/cm³ (25 °C)	Additive
IEL	*1	95		2	6×10 ⁻⁶	-	-	1.95	Anti-rust agent
IMI	*2	180	PTFE	2	7×10 ⁻⁷	_	-	1.95	Anti-rust agent
IS	*3	390		2	2×10⁻8	-	-	1.95	Anti-rust agent
L55/2 J	-	390	PTFE	2	2×10⁻8	6.0	0.1	1.95	Anti-rust agent
IEL/V	_	65		2	5×10 ⁻⁶	5.8	0.2	1.95	Anti-rust agent
IMI/V	_	180	PTFE	2	9×10 ⁻¹⁰	5.4	0.2	1.95	Anti-rust agent
IS/V	_	415	PIFE	2	5×10 ⁻¹⁴	5.1	0.1	1.95	None
SUPER IS/V	_	415		2	5×10 ⁻¹⁴	5.1	0.1	1.95	None

Vapor pressure of Barrierta oil


NOXLUB grease (NOK Klüber)

Product		Base oil	Thickener	Consistency NLGI No.	Vapor pressure (Knudsen number) (20 °C)	Oil separation rate wt % (100 °C, 24h)	Evaporation wt % (99 °C, 22h)	Density g/cm³ (25 °C)	Additive
KF 0622	-	65		2	3×10⁻⁵	_	-	1.96	None
KF 2024	-	200	PTFE	2	3×10 ⁻⁹	-	-	1.95	None
BF 9922	*4	1 200		2	1×10 ⁻¹⁸	-	_	2	None

Demnum (Daikin)

Product	Average molecular weight	К	inematic viscosi mm²/s	ity	Viscosity index	Pour point	Density g/cm³
		20 °C	40 °C	60 °C		°C	(20 °C)
S-20	2 700	53	25	14	150	- 75	1.86
S-65	4 500	150	65	33	180	-65	1.87
S-200	8 400	500	200	95	210	-53	1.89

Vapor pressure of Demnum

Specification Inquiry for SPACEA™ Series Bearings

To request a specification inquiry, please fill out the following form and contact your nearest NSK office.

Company name	Name	
Department	Phone	

D	From NSK									
Bearing designation,	From other company									
dimensions	Dimensions	Bore diameter ×	Outside diamet	ter × Width	n (φ	$\times \phi$ ×	mm)			
	Type of machine (example: liquid crystal cleaning equipment, coating equipment for semiconductor, etc.)									
Application										
		1. New design 2. Ex	perience with s	similar equi	ipment	3. Maintena	ınce			
	Current bearing									
	0 '" ''	1. Material								
	Specifications	2. Lubricant								
Problems/ Issues	Bearing life	(hours or months	hours or months 1. Poor lubrication 2. Particle emissions/outgassing 3. F 4. Contamination with foreign particles 5. Lubricant leaks 6. Fracture 7. Abnormal noise 9. Poor rotation							
	Required operating life) hours or months								
	Details on problems/ issues									
	Degree of vacuum	 Atmospheric pressu Atmospheric pressu Vacuum (degree of v 	re up to vacuun	n (degree o	of vacuum =	Pa)				
		1. Water environment	1. High-humic 4. De-ionized		. Water-spra	y 3. Water-i	immersed)			
Operating	Corrosion resistance	2. Corrosive liquids	Acid () A	Alkali () Other	()		
environment needs		3. Corrosive gases	F-based (Br-based () CI-ba) Othe	ased (r ()			
	Cleanliness	 Particle emissions (0 Grease-free 4. 	Class: No grease leak) 2. (age 5.	Outgassing Other (()			
	Temperature	Bearing temperature (°C)	Ambient	temperature	(°C)				
	Speed	Normal () min ⁻¹	Max () min ⁻¹				
Operating conditions	Bearing load	Radial (Other load information	N)	Axial (N))			
Comments										

Worldwide Sales Offices P: Phone F: Fax ☆: Head Office

JIANGSU

SHENZHEN

TAIPEI ☆

TAICHUNG

ΤΔΙΝΙΔΝ

India:

NSK LTD.-HEADQUARTERS, TOKYO, JAPAN

Nissei Bldg., 1-6-3 Ohsaki, Shinagawa-ku, Tokyo 141-8560, Japan

INDUSTRIAL MACHINERY BUSINESS DIVISION-HEADQUARTERS

P: ±81-3-3779-7227 F: ±81-3-3779-7432

AUTOMOTIVE BUSINESS DIVISION-HEADQUARTERS

P: +81-3-3779-7189 F: +81-3-3779-7917

Africa

South Africa:

NSK SOUTH AFRICA (PTY) LTD.

25 Galaxy Avenue, Linbro Business Park, Sandton 2146, South Africa P: +27-011-458-3600 F: +27-011-458-3608

Asia and Oceania

Australia:

NSK AUSTRALIA PTY. LTD.

MELBOURNE \$\frac{1}{2}\$ 100 Logis Boulevard, Dandenong South, Victoria, 3175, Australia

P: +61-3-9765-4400 F: +61-3-9765-4466

Suite A315, 20 Lexington Drive, Bella Vista, New South Wales, 2153, Australia P: +61-2-9839-2300 F: +61-2-8824-5794

RRISBANE 1/69 Selhurst Street, Coopers Plains, Queensland 4108, Australia

P: +61-7-3347-2600 F: +61-7-3345-5376

PERTH Unit 1, 71 Tacoma Circuit, Canning Vale, Western Australia 6155, Australia

P: +61-8-9256-5000 F: +61-8-9256-1044

New Zealand:

JIANGSU

LUOYANG

NSK NEW ZEALAND LTD.

AUCKLAND Unit F. 70 Business Parade South, Highbrook, Business Park Auckland 2013, New Zealand

P: +64-9-276-4992 F: +64-9-276-4082

NSK (SHANGHAI) TRADING CO., LTD.

No.8 NSK Rd., Huagiao Economic Development Zone, Kunshan, Jiangsu, China (215332)

P: +86-512-5796-3000 F: +86-512-5796-3300

NSK (CHINA) INVESTMENT CO., LTD.

JIANGSU ☆ No.8 NSK Rd., Huagiao Economic Development Zone, Kunshan, Jiangsu, China (215332)

P: +86-512-5796-3000 F: +86-512-5796-3300

BFIJING Room 1906, Beijing Fortune Bldg., No.5 Dong San Huan Bei Lu, Chao Yang District,

Beijing, China (100004)

P: +86-10-6590-8161 F: +86-10-6590-8166

TIAN JIN Unit 4604, 46/F., Metropolitan Tower, 183 Nanjing Road, Heping District,

Tianiin, China (300051)

P: +86-22-8319-5030 F: +86-22-8319-5033

CHANGCHUN Room 902-03. Changchun Hongwell International Plaza, No.3299 Renmin Street.

Changchun, Jilin, China (130061)

P: +86-431-8898-8682 F: +86-431-8898-8670

SHENYANG Room 1101, China Resources Building, No. 286 Qingnian Street,

Heping District, Shenyang Liaoning, China (110004) P: ±86-24-2334-2868 F: ±86-24-2334-2058

DALIAN Room 1805 Xiwang Tower, No.136 Zhongshan Road, Zhongshan District, Dalian, Liaoning, China (116001)

P: +86-411-8800-8168 F: +86-411-8800-8160

NAN.IING Room A1 22F, Golden Eagle International Plaza, No.89 Hanzhong Road, Nanjing,

Jiangsu, China (210029)

P: +86-25-8472-6671 F: +86-25-8472-6687

FUZHOU Room 1801-1811, B1#1A Class Office Building, Wanda Plaza, No.8 Aojiang Road,

Fuzhou, China (350009)

P: +86-591-8380-1030 F: +86-591-8380-1225

Room 1512, No.198Yuncai Road, Office Building, Oceanwide City Square, WUHAN

JiangHan, District, WuHan, China (400039)

P: +86-27-8556-9630 F: +86-27-8556-9615 OINGDAO Room 802, Farglory International Plaza, No.26 Xianggang Zhong Road, Shinan District,

Qinadao, Shandong, China (266071)

P: +86-532-5568-3877 F: +86-532-5568-3876

GUANGZHOU Room 1011-16, Yuexiu Financial Tower, No.28 Zhujiang Road East, Zhujiang

New Town, Guangzhou, Guangdong, China (510627) P: +86-20-3817-7800 F: +86-20-3786-4501

CHANGSHA Room 3209, Huayuan International Center, No.36, Section 2, Xiangjiang Middle

Road, Tianxin District, Changsha, Hunan, China (410002) P: +86-731-8571-3100 F: +86-731-8571-3255

Room 955, HUA-YANG PLAZA HOTEL, NO.88 Kaixuan W.Rd., Jian Xi District,

Luoyang, Henan Province, China (471003)

P: +86-379-6069-6188 F: +86-379-6069-6180

Room 1007, B Changan Metropolls Center, No.88 Nanguanzheng Steet, Xi'an, XI'AN

Shanxi, China (710068)

P: +86-29-8765-1896 F: +86-29-8765-1895

CHONGQING Room 612, Commercial Apartment, Athestel Hotel, No.288, Keyuan Rd.4,

> Jiulonapo District, Chongaina, China (400039) P: +86-23-6806-5310 F: +86-23-6806-5292

CHENGDU Room1117, Lippo Tower, No.62 North Kehua Road, Chengdu, Sichuan, China (610041)

P: +86-28-8528-3680 F: +86-28-8528-3690

P: +886-6-215-6058 F: +886-6-215-5518

Kowloon, Hong Kong, China

NSK BEARINGS INDIA PRIVATE LTD. TVH Beliciaa Towers, 2nd Floor, Block I, No.71/1, MRC Nagar Main Road, MRC

Nagar, Chennai-600 028,India

P: +91-44-2847-9600 F: +91-44-2847-9601

P: +86-512-5796-3000 F: +86-512-5796-3300

P: +852-2739-9933 F: +852-2739-9323

P: +86-755-25904886 F: +86-755-25904883

P: +886-2-2772-3355 F: +886-2-2772-3300

P: +886-4-2708-3393 F: +886-4-2708-3395

HONG KONG 🔯 Suite 705. 7th Floor, South Tower, World Finance Centre, Harbour City, T.S.T.

MUMBAI No.321, A Wing, Ahura Centre, 82, Mahakali Caves Road, Andheri (E),

Mumbai-400 093, India

P: +91-22-2838-7787

.IAMSHEDPLIR 13/A. 2nd Floor, Circuit House Area, North West Layout, Road No.12, (Near Sai

No.8 NSK Rd., Huaqiao Economic Development Zone, Kunshan, Jiangsu, China (215332)

Room 624-626, 6/F, Kerry Center, Renminnan Road, Shenzhen, Guangdong, China

10F-A6, No.168, Sec.3, Naniing East Rd., Zhongshan Dist., Taipei City 104.

3F. -2, No. 540, Sec. 3, Taiwan Blvd., Xitun Dist., Taichung City 407, Taiwan

Rm. A1, 9F., No.189, Sec. 1, Yongfu Rd., West Central Dist., Tainan City 700,

Baba Mandir), Sonari, Jamshedpur-831 011, Jharkhand, India

Unit No. 202, 2nd Floor, 'A' Block, Iris Tech Park, Sector – 48 (Sohna Boad)

Gurgaon-122018, Harvana, India

P· +91-124-4838000

Indonesia

NSK CHINA SALES CO., LTD.

TAIWAN NSK PRECISION CO., LTD.

NSK HONG KONG LTD.

PT. NSK INDONESIA

GLIRGAON

JAKARTA

Summitmas II, 6th Floor, Jl. Jend Sudirman Kav. 61-62, Jakarta 12190, Indonesia

P: +62-21-252-3458 F: +62-21-252-3223

Korea:

NSK KOREA CO., LTD.

Posco Center (West Wing) 9F, 440, Teheran-ro, Gangnam-gu,

Seoul, 06194, Korea

P: +82-2-3287-0300 F: +82-2-3287-0345

NSK BEARINGS (MALAYSIA) SDN. BHD.

SHAH ALAM 🖈 No. 2, Jalan Pemaju, U1/15, Seksyen U1, Hicom Glenmarie Industrial Park,

40150 Shah Alam, Selangor, Malaysia

P: +60-3-7803-8859 F: +60-3-7806-5982

No.24, Jalan kikik, Taman Inderawasih, 13600 Prai, Penang, Malaysia

P: +60-4-3902275 F: +60-4-3991830

JOHOR BAHRI I 88 Jalan Ros Merah 2/17 Taman Johor Java 81100 Johor Bahru Johor Malaysia

P: +60-7-3546290 F: +60-7-3546291

No.10&10A, Jalan Industri Paloh, Kawasan Perindustrian Ringan Paloh,

30200 Ipoh, Perak, Malaysia P: +60-5-2555000 F: +60-5-2553373

Philippines:

NSK REPRESENTATIVE OFFICE MANILA

8th Floor The Salcedo Towers 169 H.V. Dela Costa St., Salcedo Villege Makati City, Philippines 1227

P: +63-2-893-9543 F: +63-2-893-9173

Singapore: NSK INTERNATIONAL (SINGAPORE) PTE LTD.

238A, Thomson Road, #24-01/05, Novena Square Tower A, Singapore 307684

P: +65-6496-8000 F: +65-6250-5845

NSK SINGAPORE (PRIVATE) LTD.

238A, Thomson Road, #24-01/05, Novena Square Tower A, Singapore 307684 SINGAPORE

P: +65-6496-8000 F: +65-6250-5845 Thailand:

NSK BEARINGS (THAILAND) CO.,LTD.

Vietnam:

BANGKOK 26 Soi Onnuch 55/1 Pravet Subdistrict, Pravet District, Bangkok 10250, Thailand

P: +66-2320-2555 F: +66-2320-2826

NSK VIETNAM CO., LTD.

Techno Center, Room 204-205, Thang Long Industrial Park, Dong Anh District,

Hanoi, Vietnam

P: +84-24-3955-0159 F: +84-24-3955-0158 NSK REPRESENTATIVE OFFICE

HO CHI MINH CITY Unit 609, The Landmark Building, 5B Ton Duc Thang Street, District 1,

Ho Chi Minh City, Vietnam

P: +84-28-3822-7907 F: +84-28-3822-7910

Worldwide Sales Offices

Europe

United Kingdom

NSK EUROPE LTD. (EUROPEAN HEADQUARTERS)

MAIDENHEAD Belmont Place, Belmont Road, Maidenhead, Berkshire SL6 6TB, U.K.

P: +44-1628-509-800 F: +44-1628-509-808

NSK UK LTD.

NEWARK Northern Road, Newark, Nottinghamshire NG24 2JF, U.K.

P: +44-1636-605-123 F: +44-1636-605-000

France:

NSK FRANCE S.A.S.

PARIS Quartier de l'Europe, 2 Rue Georges Guynemer, 78283 Guyancourt, France P: +33-1-30-57-39-39 F: +33-1-30-57-00-01

Germany:

NSK DEUTSCHLAND GMBH

DUSSELDORF ☆ Harkortstrasse 15, D-40880 Ratingen, Germany P: +49-2102-4810 F: +49-2102-4812-290

STUTTGART Liebknechtstrasse 33, D-70565 Stuttgart-Vaihingen, Germany

P: +49-711-79082-0 F: +49-711-79082-289 WOLFSBURG Tischlerstrasse 3, D-38440 Wolfsburg, Germany P: +49-5361-27647-10 F: +49-5361-27647-70

Italy:

NSK ITALIA S.P.A.

MILANO Via Garibaldi 215, Garbagnate Milanese (Milano) 20024, Italy

P: +39-299-5191 F: +39-299-025778

Netherlands:

NSK EUROPEAN DISTRIBUTION CENTRE B.V.

TILBURG Brakman 54, 5047 SW Tilburg, Netherlands P: +31-13-4647647 F: +31-13-4641082

Poland:

NSK REPRESENTATIVE OFFICE

WARSAW Ul. Migdalowa 4/73, 02-796, Warsaw, Poland P: +48-22-645-1525 F: +48-22-645-1529

Spain:

NSK SPAIN S.A.

BARCELONA C/Tarragona, 161 Cuerpo Bajo, 2a Planta, 08014, Barcelona, Spain

P: +34-93-289-2763 F: +34-93-433-5776

Turkev:

NSK RULMANLARI ORTA DOGU TIC. LTD. STI.

Cevizli Mahallesi. D-100 Güney Yanyolu, Kuriş Kule İş Merkezi No:2 Kat:4, P.K.: ISTANBUL

34846 Cevizli-Kartal-Istanbul Turkey P: +90-216-5000-675 F: +90-216-5000-676

United Arab Emirates:

NSK BEARINGS GULF TRADING CO.

JAFZA View 19, Floor 24 Office LB192402/3, PO Box 262163, Downtown Jebel Ali, DUBAI

Dubai UAF

P: +971-(0)4-804-8200 F: +971-(0)4-884-7227

North and South America

United States of America:

NSK AMERICAS, INC. (AMERICAN HEADQUARTERS)

ANN ARBOR 4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A. P: +1-734-913-7500 F: +1-734-913-7511

NSK CORPORATION

ANN ARBOR 4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A.

P: +1-734-913-7500 F: +1-734-913-7511

NSK PRECISION AMERICA, INC.

3450 Bearing Drive, Franklin, Indiana 46131, U.S.A. FRANKLIN ☆

P: +1-317-738-5000 F: +1-317-738-5050

780 Montague Expressway, Suite 505, San Jose, California, 95131, U.S.A. SAN JOSE

P: +1-408-944-9400 F: +1-408-944-9405

NSK LATIN AMERICA, INC. MIAMI

11601 NW 107 Street, Suite 200, Miami Florida, 33178, U.S.A.

P: +1-305-477-0605 F: +1-305-477-0377

NSK CANADA INC.

317 Rutherford Road South, Brampton, Ontario, L6W 3R5, Canada TORONTO ☆

P: +1-888-603-7667 F: +1-905-890-1938 MONTREAL 2150-32E Avenue Lachine, Quebec, Canada H8T 3H7

P: +1-514-633-1220 F: +1-800-800-2788

Argentina:

Canada:

NSK ARGENTINA SRL

BUENOS AIRES Garcia del Rio 2477 Piso 7 Oficina "A" (1429) Buenos Aires-Argentina

P: +54-11-4704-5100 F: +54-11-4704-0033

Brazil:

NSK BRASIL LTDA.

SUZANO & Av. Vereador João Batista Fitipaldi, 66, Vila Maluf, Suzano-SP-Brazil-CEP 08685-000

P: Phone F: Fax ☆: Head Office

P: +55-11-4744-2500

JOINVILLE Rua Blumenau, 178, sala 910, Centro, Joinville-SC-Brazil-CEP 89204-250

Peru: NSK PERU S.A.C.

LIMA Calle Teniente Enrique Palacios 360 Oficina 311 Miraflores, Lima, Peru

P: +51-493-4385

Mexico:

NSK RODAMIENTOS MEXICANA, S.A. DE C.V.

SILAO, GUANAJUATO Circuito Mexiamora Oriente No. 331, Parque Industrial Santa Fe I, Puerto

Interior, Silao, Guanajuato, Mexico, C.P. 36275 P: +52-472-500-9500 F: +52-472-103-9403

<As of August 2021>

For the latest information, please refer to the NSK website.

Every care has been taken to ensure the accuracy of data in this publication, but NSK Ltd, accepts no liability for any loss or damage incurred from errors or omissions, As we pursue continuous improvement, all content (text, images, product appearances, specifications, etc.) contained in this publication is subject to change without notice.

Unauthorized copying and/or use of the contents of this publication is strictly prohibited. Please investigate and follow the latest product export laws, regulations, and permit procedures when exporting to other countries.

